Abstract:
Provided is a display panel which may include a pixel array including a plurality of pixels connected to scan lines and data lines, a photonic synapse block including a plurality of photonic synapse elements, and a neuron block including a plurality of neuron elements electrically connected to the plurality of photonic synapse elements.
Abstract:
A display device includes a display panel and a driver which receives image signals and transmits data signals to the display panel. The driver includes an image sticking compensator that converts the image signals such that the first image is periodically shifted while being displayed. The image sticking compensator includes an extractor which extracts compensation area data corresponding to a first image displayed in a compensation area, a calculator which calculates fixed data based on the compensation area data and corresponding to the first image, and a shifter which generates shift-fixed data based on the fixed data. The compensation area includes a first area in which the first image is displayed and a second area in which a peripheral image at least partially surrounding the first image is displayed.
Abstract:
An organic light-emitting display apparatus includes a plurality of pixels, each including: an organic light emitting diode (OLED); a driving transistor; and a first node therebetween; a sensor for sensing a first current from the driving transistor when a first reference voltage is applied to the first node and sensing a second current from the driving transistor when a second reference voltage is applied to the first node, when a first source data signal, corresponding to a first gray level, is transferred to a corresponding one of the pixels; a driving current determiner for generating characteristic information of the driving transistor based on the first and the second currents and determining a driving current of the driving transistor, corresponding to the first gray level, based on the characteristic information of the driving transistor and current-voltage information of the OLED, which is stored in the memory.
Abstract:
The present disclosure provides a display device with a display panel and driver. The driver includes a logo compensator to generate a logo map data with respect to a logo area through which the logo image is displayed and compensates for a brightness of the logo area using the logo map data. The logo compensator includes an extractor, a logo calculator, a logo determination unit, and a brightness compensation block. The extractor extracts logo area data. The logo calculator calculates the logo map data with first data corresponding to a first image recognized as the logo image and second data corresponding to a second image recognized as a logo background image. The logo determination unit sets a boundary area and determining whether a first area corresponding to the first image overlaps the boundary area to output determination data. The brightness compensation block compensates for the brightness of the logo area.
Abstract:
A display device includes a display panel, a memory, a dithering processor, and a panel driver. The display panel includes a display surface, and the memory stores dither patterns with respect to at least one spot area included in the display surface. The dithering processor selects a dither pattern among the dither patterns in a predetermined time unit and outputs a compensation image signal corresponding to the dither pattern. The panel driver outputs a data signal corresponding to the spot area based on the compensation image signal. Each of the dither patterns includes a first grayscale area having a first grayscale value higher than a first target grayscale value of the spot area and a second grayscale area having a second grayscale value lower than the first target grayscale value.
Abstract:
A driving controller includes a logo detector. The logo detector includes a histogram extractor which receives input image data and extracts a first histogram from logo area data of the input image data, a first histogram regenerator electrically connected to the histogram extractor and configured to receive the first histogram from the histogram extractor to generate a second histogram based on the first histogram and a logo map determiner electrically connected to the histogram extractor and the first histogram regenerator, and configure to select one of the first histogram and the second histogram to generate a first logo map. The driving controller is configured to compensate the logo area data of the input image data using the first logo map.
Abstract:
A driving controller of a display device includes a driving frequency controller for receiving an image signal, determining a driving frequency based on the image signal, and outputting a masking enable signal corresponding to the driving frequency, and an image processor for converting the image signal into a data signal and outputting the data signal, wherein the image processor sequentially converts, based on the masking enable signal being at an active level, a part of bits of the image signal into the data signal corresponding to a plurality of dither patterns.
Abstract:
An afterimage analyzer may include an accumulation determiner which determines an accumulation interval of images based on a first change amount of images in regions of interest of the images in which an afterimage object is disposed and a second change amount of images in entire regions, an image accumulator which accumulates the images during the accumulation interval to generate accumulated images, and an afterimage object detector which detects the afterimage object from the accumulated images.
Abstract:
An organic light-emitting display apparatus includes a plurality of pixels, each including: an organic light emitting diode (OLED); a driving transistor; and a first node therebetween; a sensor for sensing a first current from the driving transistor when a first reference voltage is applied to the first node and sensing a second current from the driving transistor when a second reference voltage is applied to the first node, when a first source data signal, corresponding to a first gray level, is transferred to a corresponding one of the pixels; a driving current determiner for generating characteristic information of the driving transistor based on the first and the second currents and determining a driving current of the driving transistor, corresponding to the first gray level, based on the characteristic information of the driving transistor and current-voltage information of the OLED, which is stored in the memory.