Abstract:
A printed circuit board includes a substrate and a plurality of pad forming regions disposed thereon. The plurality of pad forming regions are spaced apart from each other by a predetermined distance. A plurality of connection pads are disposed on a portion of the plurality of pad forming regions. The plurality of connection pads are configured to transmit or receive a signal to an external device or from the external device. The printed circuit board includes a path configured for the transportation of moisture therein.
Abstract:
A gate driving module includes a gate driver and a gate signal generator. The gate driver generates a vertical start signal, a plurality of gate clock signals and a plurality of inverse gate clock signals based on a vertical start control signal, a plurality of gate clock control signals, a gate on voltage, a first gate off voltage and a second gate off voltage. The number of the gate clock signals is P. The number of the inverse gate clock signals is P. The number of the gate clock control signals is P. P is a positive integer equal to or greater than two. The gate signal generator generates a gate signal based on the vertical start signal, the gate clock signals and the inverse gate clock signals.
Abstract:
A gate driving module includes a gate driver and a gate signal generator. The gate driver generates a vertical start signal, a plurality of gate clock signals and a plurality of inverse gate clock signals based on a vertical start control signal, a plurality of gate clock control signals, a gate on voltage, a first gate off voltage and a second gate off voltage. The number of the gate clock signals is P. The number of the inverse gate clock signals is P. The number of the gate clock control signals is P. P is a positive integer equal to or greater than two. The gate signal generator generates a gate signal based on the vertical start signal, the gate clock signals and the inverse gate clock signals.