Abstract:
In a method of manufacturing a transparent display device, a substrate including a pixel region and a transmission region may be provided. A first electrode may be formed on the substrate in the pixel region, and a display layer may be formed on the first electrode. A second electrode facing the first electrode may be formed on the display layer, and a capping structure including a first capping layer and a second capping layer may be formed on the second electrode. The first capping layer may be formed on the second electrode in the pixel region and a first region of the transmission region by using a mask that has an opening, the mask may be shifted, and the second capping layer may be formed on the second electrode in the pixel region and a second region of the transmission region by using the shifted mask.
Abstract:
An organic light emitting display apparatus and a method of manufacturing the same are provided. The apparatus includes a substrate, a first electrode formed on the substrate, an intermediate layer formed on the first electrode. The intermediate layer includes an organic emission layer. A second electrode is formed on the intermediate layer, and a capping layer is formed on the second electrode in a first region. The capping layer includes a first edge portion and at least two layers. A third electrode is formed on the second electrode in a second region. The second region is not overlapped with the first region, and the third electrode includes a second edge portion having a side portion facing a side portion of the first edge portion of the capping layer. Electric properties and image quality may be improved.
Abstract:
An organic light emitting display apparatus includes a lower substrate and an upper substrate. The lower substrate includes a light emitting device having an organic emission layer between first and second electrodes, and an auxiliary electrode under and electrically connected to the second electrode. The upper substrate includes an embossing member contacting the second electrode. The embossing member is coupled to the upper substrate to face the lower substrate and applies a pressure to establish an electrical connection between the auxiliary electrode and the second electrode.
Abstract:
An organic light-emitting display apparatus includes a substrate including a display area and a peripheral area surrounding the display area, a plurality of pixels being disposed in the display area, a plurality of first electrodes in the display area, a plurality of stripe-shaped second electrodes in the display area, the second electrodes extending in a first direction and being spaced apart from each other in a second direction crossing the first direction, and each of the plurality of the second electrodes having an uneven thickness along a third direction inside the display area, an intermediate layer between corresponding first and second electrodes, the intermediate layer having a light-emitting layer, and a connection wiring in the peripheral area, the connection wiring electrically connecting the plurality of the second electrodes with each other.
Abstract:
Provided is a multi-display apparatus. The multi-display apparatus includes a first display including a region configured to allow external light to pass therethrough, a first module electrically coupled to the first display unit, a second display coupled to the first display, the second display overlapping the first module and being configured to not allow external light to pass therethrough, and a second module electrically coupled to the second display.
Abstract:
A method of manufacturing an organic light emitting display apparatus is provided. A plurality of first electrodes is formed on a substrate. An intermediate layer including an emission layer is formed on the plurality of first electrodes. A deposition mold including a plurality of auxiliary patterning lines is formed by performing a deposition process twice using a mask. The mask includes a plurality of aperture sets, each of the plurality of aperture sets corresponding to part of each of the plurality of auxiliary patterning lines. A plurality of second electrodes is formed on the intermediate layer by depositing a conductive material into the deposition mold.
Abstract:
An organic light-emitting display device and a method of manufacturing the organic light-emitting display device are provided. The organic light-emitting display device includes a plurality of pixels each including: a first region including a light-emitting region for emitting light, a first electrode and an emission layer covering the first electrode being located in the light-emitting region; and a second region including a transmissive region for transmitting external light through the display device. The display device also includes: a third region between the pixels; a first auxiliary layer in the first and third regions; a second electrode on the first auxiliary layer in the first and third regions; a second auxiliary layer covering the second electrode and located in the first and second regions and not in the third region; and a third electrode on the second electrode in the third region.
Abstract:
A display device including a substrate; an organic light emission unit, which is arranged on the substrate, wherein light emission regions arranged in a first direction emit light of a same color and light emission regions adjacent to one another from among light emission regions arranged in a second direction crossing the first direction emit light of different colors; a counter electrode, which is arranged to cover at least the light emission regions; and an auxiliary electrode, which is formed on the auxiliary electrode, does not overlap the light emission regions, and extends in the second direction.
Abstract:
An organic light-emitting display apparatus including: a substrate; a plurality of pixels that are formed on the substrate and each have a light emission area from which visible rays are emitted and a transmission area through which external light is transmitted; a pixel circuit portion disposed in each light emission area of the plurality of pixels; a first electrode that is disposed in each light emission area and is electrically connected to the pixel circuit portion; an intermediate layer that is formed on the first electrode and includes an organic emissive layer; a second electrode formed on the intermediate layer; and a capping layer that is disposed on the second electrode and includes a first capping layer corresponding to the light emission area and a second capping layer corresponding to the transmission area. Accordingly, electrical characteristics and image quality of the organic light-emitting display apparatus may be improved.
Abstract:
An organic light emitting display (OLED) device is disclosed. The OLED device may include a substrate comprising a display region and a peripheral region, the display region comprising a first transmission portion and at least one light emitting portion, the peripheral region comprising a second transmission portion and at least one electrode placement portion, a first electrode in the display region, an organic light emitting layer on the first electrode, a second electrode in the display region and the peripheral region, the second electrode opposite to the first electrode with respect to the organic light emitting layer, and a third electrode in the peripheral region. The first electrode may be patterned as an island shape to be separated per the light emitting portion. The third electrode may be patterned as an island shape to be separated per the electrode placement portion.