Abstract:
A display device includes a first data driver which is disposed at an upper side of a display panel and supplies a data signal to data lines of a plurality of data lines, a second data driver which is disposed at a lower side of the display panel and supplies a data signal to remaining data lines of the plurality of data lines, and a signal controller which outputs a corrected image signal, based on a first lookup table which stores a correction value of a first input image signal for the first data driver and a second lookup table which stores a correction value of a second input image signal for the second data driver.
Abstract:
A display apparatus includes a plurality of pixels connected to a plurality of gate lines and a plurality of data lines and a timing controller, in which each pixel includes a first sub-pixel and a second sub-pixel. In such a display apparatus, the timing controller provides the first sub-pixel and the second sub-pixel with a first data signal and a second data signal corresponding to one of a high gray scale curve and a low gray scale curve, alternately every frame, when the image signal is a first type of image signal, and the timing controller provides the first sub-pixel with a first data signal corresponding to the high gray scale curve and the second sub-pixel with a second data signal corresponding to the low gray scale curve when the image signal is a first type of image signal.
Abstract:
A display device includes a backlight unit including a plurality of light emitting blocks, a first controller configured to generate first block representative value information for first pixel blocks based on first image data, and a second controller configured to generate second block representative value information for second pixel blocks based on second image data. The first controller receives the second block representative value information from the second controller, and the second controller receives the first block representative value information from the first controller. The first and second controllers generate duty information for the plurality of light emitting blocks based on the first and second block representative value information, and generate light profile information of the backlight unit. The first controller compensates the first image data based on the light profile information, and the second controller compensates the second image data based on the light profile information.
Abstract:
A method of synchronizing a driving module includes applying a plurality of original data enable (“DE”) signals to a plurality of timing controller of the driving module, respectively, generating a synch DE signal from the driving module based on the earliest signal among the original DE signals, and transferring the synch DE signal to the plurality of timing controllers in a cascade mode.
Abstract:
A method of driving a transparent liquid crystal display apparatus includes a transparent display panel including a brightness sensor and a timing controller. The timing controller includes a YCbCr converter configured to convert input pixel data to YCbCr data, a histogram extractor configured to receive the YCbCr data and generate histogram information about the number of values corresponding to each of brightness data, a grayscale analysis unit configured to analyze the histogram information and determine a type of an input image, an image processer configured to process the YCbCr data according to the type of the input image and the ambient brightness information and generate an output YCbCr′ data, and an RGB converter configured to convert the output YCbCr′ data to output image data.
Abstract:
An I2C router system includes an I2C router part, a first slave device and a second slave device. The I2C router part includes a first I2C router configured to output a first I2C signal via a first I2C bus, and a second I2C router configured to output a second I2C signal via a second I2C bus. The first slave device can be configured to receive the first I2C signal via the first I2C bus. The second slave device can be configured to receive the second I2C signal via the second I2C bus.