Abstract:
A display according to exemplary embodiments includes: a substrate; a first gate line, a second gate line, and a data line disposed on the substrate; a plurality of pixels including a first subpixel and a second subpixel connected to the first gate line and the data line, the first subpixel including a first subpixel electrode and the second subpixel including a second subpixel electrode; a first switching element connected to the first gate line and a first voltage line, and configured to control a voltage of a first capacitor connected to the first subpixel electrode; a second switching element connected to the second gate line, a second voltage line, and the first capacitor, and configured to control the voltage of the first capacitor; and a third switching element connected to the first gate line, the second subpixel electrode and configured to control the voltage of the second subpixel electrode.
Abstract:
A liquid crystal display includes: a first substrate, a second substrate facing the first substrate, a liquid crystal layer interposed between the first substrate and the second substrate and including liquid crystal molecules, a gate line positioned on the first substrate, a data line positioned on the first substrate and crossing the gate line, a first thin film transistor and a second thin film transistor connected to the gate line and the data line, a third thin film transistor connected to the gate line and the second thin film transistor, a reference voltage line connected to the third thin film transistor, and a pixel electrode including a first subpixel electrode connected to the first thin film transistor and a second subpixel electrode connected to the second thin film transistor.
Abstract:
A liquid crystal display includes: a first substrate, a second substrate facing the first substrate, a liquid crystal layer interposed between the first substrate and the second substrate and including liquid crystal molecules, a gate line positioned on the first substrate, a data line positioned on the first substrate and crossing the gate line, a first thin film transistor and a second thin film transistor connected to the gate line and the data line, a third thin film transistor connected to the gate line and the second thin film transistor, a reference voltage line connected to the third thin film transistor, and a pixel electrode including a first subpixel electrode connected to the first thin film transistor and a second subpixel electrode connected to the second thin film transistor.
Abstract:
A liquid crystal display (LCD) pixel includes a first substrate, a first electrode and a second electrode disposed on the first substrate, an insulation layer configured to overlap at least a portion of the first electrode and the second electrode, a first slit electrode and a second slit electrodes disposed on the insulation layer, a second substrate disposed across from the first substrate, an upper-plate common electrode disposed on the second substrate, and a liquid crystal layer interposed between the slit electrodes and the upper-plate common electrode. The LCD pixel driven by a plurality of regions in which different vertical electric fields are generated based on arrangements of at least one of the first electrode, the second electrode, the first slit electrode, the second slit electrode, and the upper-plate common electrode.
Abstract:
An array substrate includes a lower substrate, a switching element and a pixel electrode. In the lower substrate, unit pixel areas are each divided into a plurality of domains. The switching element is disposed on the lower substrate and transmits a pixel signal. The pixel electrode is disposed on the unit pixel area and is electrically connected to the switching element. The pixel electrode includes a plurality of slit portions disposed thereon. A portion of the slit portions is longitudinally extended in a zigzag shape along different directions in correspondence with the domains.
Abstract:
A photo-alignment composition includes a compound comprising a repeat unit represented by Chemical Formula 1 and a solvent. The photo-alignment composition is coated on a first substrate and a second substrate facing the first substrate, thus forming alignment layers. A liquid crystal layer is formed between the first substrate and the second substrate. The photo-alignment composition includes a compound structure having a high decomposition rate and a functional group capable of a hydrogen bond, which is weaker than a covalent bond. Thus, a hardness of the alignment layer may be improved at a room temperature, and a hydrogen bonding functional group of the photo-alignment composition may be decomposed at a high temperature thus photo-aligning the alignment layer. Therefore, an afterimage of a screen may decrease, and a hardness of the alignment layer may increase.
Abstract:
A method for manufacturing a liquid crystal display (“LCD”) includes; disposing a gate line including a gate electrode on a substrate, disposing a gate insulating layer on the gate line, disposing a data layer including a data line, source electrode and a drain electrode facing the source electrode on the gate insulating layer, disposing a color filter on the gate insulating layer, disposing an overcoat layer on the color filter, disposing a planarization layer on a portion of the overcoat layer corresponding to the gate line, the data line and the drain electrode, and disposing a pixel electrode in contacted with the overcoat layer in a region corresponding to the color filter.