Abstract:
A method of forming a metal pattern is disclosed. According to the method, a gate electrode and a pixel electrode are formed on a substrate. A metal layer is formed covering the gate electrode and the pixel electrode. A photo pattern is formed wherein a thickness of an area of the photo pattern that overlaps the gate electrode is smaller than a thickness of other areas of the photo pattern. The photo pattern is soft-baked. The photo pattern is exposed to light. The photo pattern is developed to expose a portion of the metal layer that overlaps the gate electrode. The exposed portion of the metal layer is removed to form a source electrode and a drain electrode, the source electrode and the drain electrode being spaced apart from each other with respect to the gate electrode.
Abstract:
A display device includes a substrate including pixels including a first pixel and a second pixel, a driver of the first pixel disposed on the substrate, a driver of the second pixel disposed on the substrate, a first pixel electrode overlapping the driver of the first pixel and electrically connected to the driver of the first pixel, a second pixel electrode overlapping the driver of the first pixel and the driver of the second pixel and electrically connected to the driver of the second pixel, an emission layer disposed on the first pixel electrode and the second pixel electrode, and a common electrode disposed on the emission layer, wherein the second pixel electrode includes a first opening overlapping the driver of the first pixel.
Abstract:
A thin film transistor array panel includes an insulation substrate; a gate line and a data line on the insulation substrate; a first passivation layer on the gate line and the data line; an organic layer on the first passivation layer; a first electrode on the organic layer; a second passivation layer on the first electrode; and a second electrode on the second passivation layer. An edge of the organic layer is exposed by the first electrode.
Abstract:
A method of forming a metal pattern is disclosed. According to the method, a gate electrode and a pixel electrode are formed on a substrate. A metal layer is formed covering the gate electrode and the pixel electrode. A photo pattern is formed wherein a thickness of an area of the photo pattern that overlaps the gate electrode is smaller than a thickness of other areas of the photo pattern. The photo pattern is soft-baked. The photo pattern is exposed to light. The photo pattern is developed to expose a portion of the metal layer that overlaps the gate electrode. The exposed portion of the metal layer is removed to form a source electrode and a drain electrode, the source electrode and the drain electrode being spaced apart from each other with respect to the gate electrode.
Abstract:
A display panel includes a plurality of display signal lines positioned in a display area. A plurality of test pads are positioned in a peripheral area around the display area and are respectively connected to the plurality of display signal lines. The plurality of test pads include a first test pad positioned at an edge of the peripheral area and a second test pad positioned at the middle of the peripheral area. A shorting bar is connected to the plurality of test pads through a contact assistant. The first test pad is connected to the second test pad through a connection line.
Abstract:
An array substrate includes a plurality of data lines, a plurality of gamma lines, a repair pad, a repair line, an inspection pad and an inspection line. The data lines transmit a data voltage to an active region. The gamma lines apply a gamma reference voltage to generate the data voltage. The repair pad repairs the data line. The repair line extends from the repair pad. The repair line is disposed adjacent to the gamma line. The inspection pad applies an inspection signal. The inspection line extends from the inspection pad. The inspection line is connected to the data lines. The gamma lines are connected to the inspection line.