Abstract:
A display substrate includes a base substrate, a color filter layer and a retarder layer. The base substrate includes a first sub pixel area, a second sub pixel area and a third sub pixel area. The color filer layer is disposed on a front surface of the base substrate, and includes at least one of a magenta color filter, a cyan color filter and a yellow color filter in the first sub pixel area and the second sub pixel area and a white color filter in the third sub pixel area. The retarder layer is disposed on a rear surface of the base substrate opposite to the front surface of the base substrate. The retarder layer is configured to polarize light in the first sub pixel area and the second sub pixel area to form a first polarized light. The retarder layer is further configured to polarize the light in the third sub pixel area to form a second polarized light, the second polarized light being different from the first polarized light. Thus, a driving speed of a display apparatus may be decreased.
Abstract:
A backlight assembly includes a first light source part including a plurality of first light sources configured to generate light having a first color and a plurality of second light sources configured to generate light having a second color different from the first color, and a light guiding plate including a first incident surface and an exiting surface adjacent to the first incident surface. The exiting surface is configured to allow the light to pass therethrough. The exiting surface includes a first peripheral portion configured to absorb the light having the second color and a central portion adjacent to the first peripheral portion and configured to allow the light to pass therethrough. The first and second light sources are alternately located.
Abstract:
A display apparatus includes a display panel and a light source part. The display panel includes a first subpixel having a first color, a second subpixel having a second color and a transparent subpixel. The light source part provides a light to the display panel. The light source part includes a first light source generating a first light having a mixed color of the first primary color and the second primary color and a second light source generating a second light having a third primary color. At least one of the first and second light sources are repeatedly turned on and off.
Abstract:
A method of manufacturing a quantum dot optical component is provided. By the method, a plurality of quantum dot lines are formed on a first substrate, an encapsulation member that encapsulates the quantum dot lines is formed on the first substrate, a second substrate is laminated on the encapsulation member, and the first and second substrates are cut into a plurality of quantum dot optical components each including at least one of the quantum dot lines.
Abstract:
A backlight assembly includes a plurality of first light sources configured to emit a first color, and a plurality of second light sources configured to emit a second color different from the first color, where the backlight assembly is divided in a first boundary area, a second boundary area spaced apart from the first boundary area in a first direction, and a middle area between the first boundary area and the second boundary area, and an arrangement direction of first and second light sources of the plurality of first and second light sources in the first and second boundary areas is different from an arrangement direction of first and second light sources of the plurality of first and second light sources in the middle area.
Abstract:
A display apparatus includes a display panel including a first subpixel having a first primary color, a second subpixel having a second primary color; and a transparent subpixel; a panel driver which sets grayscale data of the first subpixel, the second subpixel and the transparent subpixel; a light source part which provides light to the display panel, where the light source comprises a first light source and a second light source having colors different from each other; and a light source driver which turns on the first light source during a first subframe, turns on the second light source during a second subframe, and turns on the first light source during a third subframe, and a first frame comprises the first subframe, the second subframe and the third subframe.
Abstract:
A liquid crystal display panel includes unit pixels including a first unit pixel and a second unit pixel, each of the first unit pixel and the second unit pixel including a first white area and first to third color areas, gate lines which extend in a first direction, cross the unit pixels and include a first gate line and a second gate line, data lines which extend in a second direction, and pixel electrodes which are electrically connected to the data lines and include first to seventh pixel electrodes, where the first to third pixel electrodes overlap the first to third color areas of the first unit pixel, respectively, the fourth to sixth pixel electrodes overlap the first to third color areas of the second unit pixel, respectively, and the seventh pixel electrode overlaps the first white areas of the first and second unit pixels.
Abstract:
A backlight assembly includes a light emitting part including a light source configured to generate a light having a first color and a phosphor disposed on the light source and having a second color, an optical filter part configured to filter a light from the light emitting part and a color conversion member disposed adjacent to the optical filter part and having a third color. A wavelength of the third color is shorter than a wavelength of the second color.
Abstract:
A display apparatus includes: a display panel including first to third sub pixels which receive a first grayscale data, a second grayscale data and a third grayscale data, respectively; a light source part which provides light to the display panel and sequentially turns on first and second light sources, which emit a first light and a second light having a color different from the first light, respectively; and a color conversion layer including a first photoluminescence part which is excited by the first light to emit light having a first primary color, a second photoluminescence part which is excited by the first light to emit light having a second primary color, and a third photoluminescence part which is excited by the first light to emit light having a third primary color, where the first to third photoluminescence parts overlap the first to third sub pixels, respectively.
Abstract:
A display apparatus includes a display panel, a display panel driver, a light source part and a local dimming driver. The display panel includes a first subpixel having a first primary color, a second subpixel having a second primary color and a transparent subpixel. The display panel driver is configured to set grayscales of the first subpixel, the second subpixel and the transparent subpixel. The light source part includes a plurality of light emitting blocks configured to provide light to the display panel. The light emitting block includes a first light source configured to generate a light of a mixed color and a second light source configured to generate a light of a third primary color. The local dimming driver is configured to alternately turn on and off the first light source and the second light source and configured to independently drive the light emitting blocks.