Abstract:
A connector, a light source module including the connector, and a light source module array including the light source module array are provided. The connector includes a first connection part configured to connect to a first wire inserted thereto; a second connection part configured to connect to a second wire inserted thereto, the first and second connection parts being disposed to face in opposite directions; a housing covering the first and second connection parts; and a push button configured to be actuated by an external force applied thereto to release a connection of the first connection part to the first wire and a connection of the second connection part to the second wire.
Abstract:
A light emitting diode (LED) control device includes: a power supply connected to a first driving node and a second driving node of an LED driver configured to provide driving power to a light source including a plurality of LEDs; a controller configured to operate by a first internal power voltage output from the power supply, and receive a control command from an external controller; and a switching device connected to the second driving node, and configured to operate by a second internal power voltage output from the power supply and control brightness of the light source based on a control signal which is output from the controller in response to the control command.
Abstract:
A light emitting diode (LED) driving device is provided. The LED driving device includes a rectifier configured to generate a rectified voltage, wherein the rectifier is directly connected to an input node of a light source including LEDs; a regulator configured to output a direct current (DC) power supply voltage using the rectified voltage; a microcontroller including a control terminal and a power terminal, wherein the microcontroller is configured to generate a dimming control signal based on a voltage input, receive the DC power supply voltage through the power terminal and output the dimming control signal through the control terminal; a driver configured to control an LED current to flow through the LEDs based on the dimming control signal; and a switch connected between a control node and a ground node, wherein an output terminal of the regulator and the control terminal are connected to the control node.
Abstract:
A light emitting diode (LED) device is provided. The LED device a first LED string configured to emit light having a first color temperature; a second LED string connected to the first LED string in parallel, and configured to emit light having a second color temperature different from the first color temperature; a controller configured to generate a control signal based on a control command received from an external controller; a switching circuit configured to control brightness of any one or any combination of the first LED string and the second LED string based on the control signal; and a power supply configured to generate an internal power voltage for operation of the controller and the switching circuit.
Abstract:
A light emitting diode (LED) module includes a plurality of LED strings and a module controller. The LED strings are connected to each other in parallel, and each of the LED strings emits light that has a different color temperature from that of the other LED strings. The module controller is configured to detect an input voltage applied to the plurality of LED strings, adjust a color temperature of the light emitted by the plurality of LED strings by adjusting a ratio of current respectively supplied to each of the plurality of LED strings based on the input voltage, and reduce a change in a luminous flux of the light emitted by the plurality of LED strings regardless of the color temperature of the light emitted by the plurality of LED strings.
Abstract:
A lighting apparatus includes a fixture having a fastening hole, the fastening hole including a first portion and a second portion connected to each other, and the second portion having a width smaller than a diameter of the first portion, a light source module having a fastening pin detachably fastened to the fastening hole, and an electrode terminal on the fixture and connected to the light source module, wherein the light source module is slidably moveable along a surface of the fixture, as the fastening pin is moveable within the fastening hole from the first portion to the second portion.
Abstract:
A connector, a light source module including the connector, and a light source module array including the light source module array are provided. The connector includes a first connection part configured to connect to a first wire inserted thereto; a second connection part configured to connect to a second wire inserted thereto, the first and second connection parts being disposed to face in opposite directions; a housing covering the first and second connection parts; and a push button configured to be actuated by an external force applied thereto to release a connection of the first connection part to the first wire and a connection of the second connection part to the second wire.
Abstract:
A light emitting diode (LED) control device includes: a power supply connected to a first driving node and a second driving node of an LED driver configured to provide driving power to a light source including a plurality of LEDs; a controller configured to operate by a first internal power voltage output from the power supply, and receive a control command from an external controller; and a switching device connected to the second driving node, and configured to operate by a second internal power voltage output from the power supply and control brightness of the light source based on a control signal which is output from the controller in response to the control command.
Abstract:
A light emitting module is configured to provide substantially uniform lighting using a plurality of lighting sources. The light emitting module includes a diffusion plate disposed at a set distance from the light emitting module. A light source substrate has a substantially quadrilateral outer perimeter with at least one gap formed therein, and a plurality of light sources are disposed on the light source substrate according to a repeated quadrilateral pattern. A distance between adjacent light sources in the repeated quadrilateral pattern is selected based on the set distance h from the diffusion plate to the light emitting module, and on a greater of two diagonal distances x, y of the quadrilateral pattern. The diffusion plate diffuses light emitted by the light sources to provide substantially uniform light. Various other aspects of the light emitting module are additionally described.