Abstract:
A display device includes a display panel and a camera module. The display panel displays an image on a first surface, and includes a first substrate, a sub-pixel structure, a reflection pattern, and a transflective reflection pattern. The first substrate included a plurality of pixel regions each having sub-pixel regions, a transparent region, and a reflection region surrounding the sub-pixel regions and the transparent region. The second substrate is disposed on the sub-pixel structure. The reflection pattern is disposed in the reflection region on the second substrate, and exposes the sub-pixel regions and the transparent region. The transflective reflection pattern is disposed on the second substrate, and has an opening exposing at least a portion of at least one transparent region among the transparent regions. The camera module is disposed in the second surface on the display panel, and the second surface is opposite to the first surface.
Abstract:
A method of manufacturing an organic light-emitting display includes a first mask process forming an active layer of a TFT and a refractive layer on a substrate, forming a DBR layer covering the active and refractive layers, a second mask process forming a gate electrode and a first electrode unit on the DBR layer, forming an interlayer insulation layer covering the gate electrode and the first electrode unit, a third mask process forming contact holes in the interlayer insulation layer and the DBR layer exposing portions of the active layer and a hole exposing the first electrode unit, a fourth mask process forming source and drain electrodes on the interlayer insulation layer that contact the active layer via the contact holes, and forming a pixel electrode from the first electrode unit, and a fifth mask process forming a pixel definition layer exposing the pixel electrode.
Abstract:
An organic light emitting display device includes a first substrate, a pixel structure, a second substrate, a reflective member, and a light transmitting member. The first substrate includes a plurality of pixel regions. Each of the pixel regions has sub-pixel regions and a reflective region surrounding the sub-pixel regions. The pixel structure is disposed in each of the sub-pixel regions on the first substrate. The second substrate is disposed on the pixel structure. The reflective member has an opening disposed in each of the sub-pixel regions, and is disposed in the reflective region of the second substrate. The light transmitting member covers the opening of the reflective member and partially overlaps the reflective member. The light transmitting member blocks ultraviolet rays and transmits a predetermined light.
Abstract:
A thin film transistor (TFT) array substrate includes a TFT including an active layer, a gate electrode, a source electrode, a drain electrode, a first gate insulating layer and a second gate insulating layer formed between the active layer and the gate electrode, and an interlayer insulating layer formed between the gate electrode and the source electrode and the drain electrode; a pixel electrode formed in an opening of the interlayer insulating layer, the pixel electrode including transparent conductive oxide; a translucent electrode formed in a region corresponding to the pixel electrode, between the first gate insulating layer and the second gate insulating layer; and a capacitor including a lower electrode formed from the same layer as the active layer, and an upper electrode formed from the same layer as the translucent electrode.
Abstract:
An organic light emitting display device includes a first substrate, a pixel structure, a second substrate, a reflective member, and a light transmitting member. The first substrate includes a plurality of pixel regions. Each of the pixel regions has sub-pixel regions and a reflective region surrounding the sub-pixel regions. The pixel structure is disposed in each of the sub-pixel regions on the first substrate. The second substrate is disposed on the pixel structure. The reflective member has an opening disposed in each of the sub-pixel regions, and is disposed in the reflective region of the second substrate. The light transmitting member covers the opening of the reflective member and partially overlaps the reflective member. The light transmitting member blocks ultraviolet rays and transmits a predetermined light.
Abstract:
An organic light emitting display panel includes a base substrate, a pixel defining layer disposed on the base substrate, a light emitting structure disposed in an opening of the pixel defining layer, and a mirror pattern disposed on an upper surface of the pixel defining layer. The pixel defining layer defines the opening and includes the upper surface that is in parallel with a surface of the base substrate and a side surface that is connected to the upper surface. The mirror pattern makes contact with the pixel defining layer, and entirely covers the upper surface of the pixel defining layer.
Abstract:
A mirror substrate includes a transparent substrate, a plurality of mirror patterns on the transparent substrate, and a mirror layer extending continuously on the plurality of the mirror patterns and the transparent substrate. The mirror layer includes a first mirror layer on the transparent substrate and on the mirror patterns, and a second mirror layer on the first mirror layer. The first mirror layer includes silicon nitride, and the second mirror layer includes silicon oxide.
Abstract:
A display device may include a display unit disposed on a substrate and a mirror substrate facing the substrate with respect to the display unit. The mirror substrate may include a first mirror layer extending continuously on a surface of a transparent substrate and a plurality of mirror patterns on the first mirror layer. The first mirror layer is formed on both a region in which the plurality of mirror patterns are formed and a region in which the plurality of mirror patterns are not formed. External light is incident to and reflected by the first mirror layer, thus reducing an image haze and enhancing a display quality of the display device. In addition, the first mirror layer and the plurality of mirror patterns may be formed by using a single halftone mask to simplify the manufacturing process and increase a productivity of the mirror substrate.
Abstract:
An etchant composition is presented. The composition includes: 18 wt % to 25 wt % of a first organic acid compound; 15 wt % to 20 wt % of a second organic acid compound; 8.1 wt % to 9.9 wt % of an inorganic acid compound; 1 wt % to 4.9 wt % of a sulfonic acid compound; 10 wt % to 20 wt % of a hydrogen sulfate salt compound; 1 wt % to 5 wt % of a nitrogen-containing dicarbonyl compound; 1 wt % to 5 wt % of an amino acid derivative compound; 0.1 wt % to 2 wt % of an iron-containing oxidizing agent compound; and a balance amount of water.