Abstract:
A rotation rate sensor includes a substrate having a main extension plane and multiple seismic masses, in which for each seismic mass the following applies: the seismic mass is drivable at a drive oscillation, which occurs along a drive direction situated parallel to the main extension plane, the seismic mass is deflectable along two different deflection directions, each direction being perpendicular to the drive direction, the rotation rate sensor being configured to generate detection signals as a function of detected deflections of the seismic masses, one detection signal of the detection signals being associated with each deflection direction of the seismic masses, the rotation rate sensor being configured so that a linear, rotational and centrifugal acceleration of the rotation rate sensor are compensated with respect to at least one rotation axis of the rotation rate sensor through compensation in each case of two corresponding detection signals of the detection signals.
Abstract:
Method for on-chip stress decoupling to reduce stresses in a vertical hybrid integrated component including MEMS and ASIC elements and to mechanical decoupling of the MEMS structure. The MEMS/ASIC elements are mounted above each other via at least one connection layer and form a chip stack. On the assembly side, at least one connection area is formed for the second level assembly and for external electrical contacting of the component on a component support. At least one flexible stress decoupling structure is formed in one element surface between the assembly side and the MEMS layered structure including the stress-sensitive MEMS structure, in at least one connection area to the adjacent element component of the chip stack or to the component support, the stress decoupling structure being configured so that the connection material does not penetrate into the stress decoupling structure and flexibility of the stress decoupling structure is ensured.