Abstract:
A digital signal processing apparatus includes a digital circuit device having one or more elements configured to process digital data; a power supply configured to deliver a controllable operating voltage for the one or more elements; control logic configured to receive feedback signals from each of the one or more elements, the feedback signals indicative of a rate at which data is moving through each individual element; and the control logic configured to output a control signal to the power supply so as to cause the power supply to reduce the operating voltage for the one or more elements responsive to a decreasing workload detected therein, and to cause the power supply to increase the operating voltage for the one or more pipelines responsive to an increasing workload detected therein.
Abstract:
An asynchronous pipeline structure includes a plurality of functional blocks comprising dynamic logic, each block precharged to an idle state responsive to a precharge control signal applied thereto, with each block, upon being precharged, receiving input data thereto for processing, and holding output data generated thereby during an evaluate phase, independent of a reset of the input data; for each block, a completion detector circuit coupled to the output of the functional block, the completion detector circuit generating an acknowledgement signal that indicates validity or absence of data at the output of the block; and for each block, a precharge control circuit generating a precharge signal, wherein for a given block, a first input to the precharge control circuit comprises the acknowledgment signal from a downstream completion detector, and second input to the precharge control circuit comprises the precharge signal from an upstream precharge control circuit.
Abstract:
A digital signal processing apparatus includes a digital circuit device having one or more elements configured to process digital data; a power supply configured to deliver a controllable operating voltage for the one or more elements; control logic configured to receive feedback signals from each of the one or more elements, the feedback signals indicative of a rate at which data is moving through each individual element; and the control logic configured to output a control signal to the power supply so as to cause the power supply to reduce the operating voltage for the one or more elements responsive to a decreasing workload detected therein, and to cause the power supply to increase the operating voltage for the one or more pipelines responsive to an increasing workload detected therein.
Abstract:
A low-power digital logic architecture exhibits the same logic and voltage level behavior as standard digital logic. A logic switch and a pair of unidirectional switches are used to control the direction of charge flow in a switched-inductor capacitor (SLC) circuit, allowing the inductor to pull charge back-and-forth from one side of the load capacitor to the other to both switch the logical state at the top of the capacitor and to recycle and store the charge in the capacitor itself.
Abstract:
An asynchronous pipeline structure includes a plurality of functional blocks comprising dynamic logic, each block precharged to an idle state responsive to a precharge control signal applied thereto, with each block, upon being precharged, receiving input data thereto for processing, and holding output data generated thereby during an evaluate phase, independent of a reset of the input data; for each block, a completion detector circuit coupled to the output of the functional block, the completion detector circuit generating an acknowledgement signal that indicates validity or absence of data at the output of the block; and for each block, a precharge control circuit generating a precharge signal, wherein for a given block, a first input to the precharge control circuit comprises the acknowledgment signal from a downstream completion detector, and second input to the precharge control circuit comprises the precharge signal from an upstream precharge control circuit.