Instance-adaptive image and video compression using machine learning systems

    公开(公告)号:US11924445B2

    公开(公告)日:2024-03-05

    申请号:US17201944

    申请日:2021-03-15

    摘要: Techniques are described for compressing data using machine learning systems and tuning machine learning systems for compressing the data. An example process can include receiving, by a neural network compression system (e.g., trained on a training dataset), input data for compression by the neural network compression system. The process can include determining a set of updates for the neural network compression system, the set of updates including updated model parameters tuned using the input data. The process can include generating, by the neural network compression system using a latent prior, a first bitstream including a compressed version of the input data. The process can further include generating, by the neural network compression system using the latent prior and a model prior, a second bitstream including a compressed version of the updated model parameters. The process can include outputting the first bitstream and the second bitstream for transmission to a receiver.

    Video compression using recurrent-based machine learning systems

    公开(公告)号:US11405626B2

    公开(公告)日:2022-08-02

    申请号:US17091570

    申请日:2020-11-06

    摘要: Techniques are described herein for coding video content using recurrent-based machine learning tools. A device can include a neural network system including encoder and decoder portions. The encoder portion can generate output data for the current time step of operation of the neural network system based on an input video frame for a current time step of operation of the neural network system, reconstructed motion estimation data from a previous time step of operation, reconstructed residual data from the previous time step of operation, and recurrent state data from at least one recurrent layer of a decoder portion of the neural network system from the previous time step of operation. A decoder portion of the neural network system can generate, based on the output data and recurrent state data from the previous time step of operation, a reconstructed video frame for the current time step of operation.