Abstract:
Providing early pipeline optimization of conditional instructions in processor-based systems is disclosed. In one aspect, an instruction pipeline of a processor-based system detects a mispredicted branch (i.e., following a misprediction of a condition associated with a speculatively executed conditional branch instruction), and records a current state of one or more condition flags as a condition flags snapshot. After a pipeline flush is initiated and a corrected fetch path is restarted, an instruction decode stage of the instruction pipeline uses the condition flags snapshot to apply optimizations to conditional instructions detected within the corrected fetch path. According to some aspects, the condition flags snapshot is subsequently invalidated upon encountering a condition-flag-writing instruction within the corrected fetch path. In this manner, the condition flags snapshot enables non-speculative (with respect to the corrected fetch path) resolution of conditional instructions earlier within the instruction pipeline, thus conserving system resources and improving processor performance.
Abstract:
Storing narrow produced values for instruction operands directly in a register map in an out-of-order processor (OoP) is provided. An OoP is provided that includes an instruction processing system. The instruction processing system includes a number of instruction processing stages configured to pipeline the processing and execution of instructions according to a dataflow execution. The instruction processing system also includes a register map table (RMT) configured to store address pointers mapping logical registers to physical registers in a physical register file (PRF) for storing produced data for use by consumer instructions without overwriting logical registers for later executed, out-of-order instructions. In certain aspects, the instruction processing system is configured to write back (i.e., store) narrow values produced by executed instructions directly into the RMT, as opposed to writing the narrow produced values into the PRF in a write back stage.
Abstract:
A method and apparatus for allowing an out-of-order processor to reuse an in-use physical register is disclosed herein. The method and apparatus uses identifiers, such as tokens and/or other identifiers in a rename map table (RMT) and a physical register file (PRF), to indicate whether an instruction result is allowed or disallowed to be written into a physical register.
Abstract:
Storing narrow produced values for instruction operands directly in a register map in an out-of-order processor (OoP) is provided. An OoP is provided that includes an instruction processing system. The instruction processing system includes a number of instruction processing stages configured to pipeline the processing and execution of instructions according to a dataflow execution. The instruction processing system also includes a register map table (RMT) configured to store address pointers mapping logical registers to physical registers in a physical register file (PRF) for storing produced data for use by consumer instructions without overwriting logical registers for later executed, out-of-order instructions. In certain aspects, the instruction processing system is configured to write back (i.e., store) narrow values produced by executed instructions directly into the RMT, as opposed to writing the narrow produced values into the PRF in a write back stage.