Abstract:
A method and device for processing spur components associated with a received wireless signal are disclosed. In one embodiment, the method includes first selecting a sub-band of a spectral band of the received signal. The selected sub-band is scanned, and a detection routine is executed to detect a spur within the scanned sub-band having a peak magnitude above a predetermined threshold. The spur frequency is determined, and the spur may be removed by a cancellation unit based on the determined frequency. The method also includes tracking the frequency of the spur to ensure continued suppression over time and under dynamic conditions.
Abstract:
Methods, systems, and devices are described for adaptive digital pre-distortion (DPD). A wireless device may identify a transmission parameter, such as data rate or transmission power, for a signal to be transmitted by a wireless modem. The wireless device may then select a power amplification response based on whether the transmission parameter exceeds a threshold. A non-linear power amplification response may be selected in cases when the data rate is low or the transmission power is high. A linear power amplification response may be selected when the data rate is high or the transmission power is low. The power amplification response may be achieved by digital distortion of the signal prior to power amplification, so selection of the response may involve adjusting a DPD compensation circuit. In some cases, the output for the non-linear response may be characterized by a Rapp model.
Abstract:
A configurable pre-emphasis filter component may be configured based upon measured frequency response (e.g., filter effect) associated with at least one analog filter positioned between a digital predistortion component and a power amplification component of a transmission circuitry. The frequency response may be measured using a calibration signal sent via the transmission circuitry, a loopback circuit, and a reception circuitry. Calibration circuitry may be used with one or more loopback circuits to measure the frequency response of various analog components of the transmission circuitry. The calibration circuitry may also include logic to determine a configuration for the PEF component based upon the measured frequency response.