Abstract:
In one embodiment, a computing system may access a first image and a second image of at least a common portion of an environment while a light emission with a predetermined emission pattern is projected by a projector. The first and second images are respectively captured by a first and a second detector that are respectively separated from the projector by a first and a second distance. The system may determine that a first portion of the first image corresponds to a second portion of the second image. The system may compute, using triangulation, a first depth value associated with the first portion and a second depth value associated with the second portion. The system may determine that the first and second depth values match in accordance with one or more predetermined criteria, and generate a depth map of the environment based on at least one of the depth values.
Abstract:
A method and a system for reconstructing obstructed face portions are provided herein. The method may include the following steps: obtaining off-line 3D data, being 3D data of a head of a person not wearing a face-obstructing object, being an object which obstructs a portion of the face of the person; obtaining in real time, real-time 3D data, being 3D data of said head, wherein said person wears said face-obstructing object; applying a 3D transformation to at least a portion of the off-line 3D data, based on the real-time 3D data, to yield reconstructed real time 3D data, being real-time 3D data related to the obstructed face portions; and merging the reconstructed real time 3D data into the real-time 3D data. The system may implement the aforementioned steps over a computer processor.
Abstract:
A solution for generating a 3D representation of an object in a scene is provided. A depth map representation of the object is combined with a reflectivity map representation of the object to generate the 3D representation of the object. The 3D representation of the object provides more complete and accurate information of the object. An image of the object is illuminated by structured light and is captured. Pattern features rendered in the captured image of the object are analyzed to derive a depth map representation and a reflectivity map representation of the illuminated object. The depth map representation provides depth information while the reflectivity map representation provides surface information (e.g., reflectivity) of the illuminated object. The 3D representation of the object can be enhanced with additional illumination projected onto the object and additional images of the object.
Abstract:
A detector for optical detection of location within a volume, comprises a beam source for shining a structured light pattern on the volume and a digital detector having detection pixels of a given size. The light pattern, when shone into the volume and reflected back to the detection pixels, has a brightness distribution with a peak and a surrounding brightness structure. Now often the peak may be smaller than the pixel size although the overall distribution of the brightness extends over multiple pixels. The system includes an electronic processor for assessing a distribution of brightness among the neighboring pixels to infer a location of the peak within a region smaller than the size of the central pixel on which it falls, thus giving sub-pixel resolution.
Abstract:
The disclosed method may include (1) sensing, via a depth-sensing subsystem, a plurality of locations in three-dimensional space corresponding to physical surfaces in a real-world environment, (2) determining a dominant plane within the real-world environment, (3) defining a three-dimensional grid that is aligned with the dominant plane, (4) identifying, based on the plurality of locations relative to the dominant plane, a set of grid coordinates within the three-dimensional grid that are indicative of the physical surfaces, and (5) determining, based on the set of grid coordinates, a safety boundary to be employed by a head-mounted display system to notify a user of the head-mounted display system of the user's proximity to the physical surfaces. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A method, a system, and a device for navigating in a virtual reality scene, using body parts gesturing and posturing are provided herein. The method may include: projecting a synthetic 3D scene, into both eyes of a user, via a near eye display, so as to provide a virtual reality view to the user; identifying at least one gesture or posture carried out by at least one body part of said user; measuring at least one metric of a vector associated with the detected gesture or posture; applying a movement or action of said user in virtual reality environment, based on the measured metrics; and modifying the virtual reality view so as to reflect the movement or action of said user in the virtual reality environment.
Abstract:
Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
Abstract:
A tracking system generates a structured light pattern in a local area. The system includes an array of lasers that generate light. The array of lasers includes a plurality of lasers and an optical element. The plurality of lasers are grouped into at least two subsets of lasers, and each of the at least two subsets of lasers is independently switchable. The optical element includes a plurality of cells that are each aligned with a respective subset of the array of lasers. Each cell receives light from a corresponding laser of the array of lasers, and each cell individually applies a modulation to the received light passing through the cell to form a corresponding portion of the structured light pattern that is projected onto a local area.
Abstract:
An object is identified or tracked within a volume by projecting a light beam encoded with one or more predefined properties to have a predefined optical structure into the volume. A detector captures light from the predefined optical structure reflected from the volume. By analyzing one or more characteristics of light from the predefined optical structure reflected from the object, the object is segmented from the volume.
Abstract:
To determine depth of an object within a volume, structured light is projected into the volume. The structured light comprises a pattern over which intensity of the light varies. A sensor detects light from the volume and uses variations in intensity of the detected light to correlate the detected light with the pattern. Based on the correlation, depth of objects within the volume is determined.