Abstract:
A method and a system for reconstructing obstructed face portions are provided herein. The method may include the following steps: obtaining off-line 3D data, being 3D data of a head of a person not wearing a face-obstructing object, being an object which obstructs a portion of the face of the person; obtaining in real time, real-time 3D data, being 3D data of said head, wherein said person wears said face-obstructing object; applying a 3D transformation to at least a portion of the off-line 3D data, based on the real-time 3D data, to yield reconstructed real time 3D data, being real-time 3D data related to the obstructed face portions; and merging the reconstructed real time 3D data into the real-time 3D data. The system may implement the aforementioned steps over a computer processor.
Abstract:
A detector for optical detection of location within a volume, comprises a beam source for shining a structured light pattern on the volume and a digital detector having detection pixels of a given size. The light pattern, when shone into the volume and reflected back to the detection pixels, has a brightness distribution with a peak and a surrounding brightness structure. Now often the peak may be smaller than the pixel size although the overall distribution of the brightness extends over multiple pixels. The system includes an electronic processor for assessing a distribution of brightness among the neighboring pixels to infer a location of the peak within a region smaller than the size of the central pixel on which it falls, thus giving sub-pixel resolution.
Abstract:
A method, a system, and a device for navigating in a virtual reality scene, using body parts gesturing and posturing are provided herein. The method may include: projecting a synthetic 3D scene, into both eyes of a user, via a near eye display, so as to provide a virtual reality view to the user; identifying at least one gesture or posture carried out by at least one body part of said user; measuring at least one metric of a vector associated with the detected gesture or posture; applying a movement or action of said user in virtual reality environment, based on the measured metrics; and modifying the virtual reality view so as to reflect the movement or action of said user in the virtual reality environment.
Abstract:
Apparatus for generating a dynamic structured light pattern for optical tracking in three-dimensional space, comprises an array of lasers, such as a VCSEL laser array, to project light in a pattern into a three-dimensional space; and an optical element or elements arranged in cells. The cells are aligned with subsets of the laser array, and each cell individually applies a modulation, in particular an intensity modulation, to light from the laser or lasers of the subset, to provide a distinguishable and separately controllable part of the dynamic structured light pattern. A method of generating a structured light pattern is disclosed, in which light is provided from an array of lasers, and light is individually projected from subsets of the array of lasers to provide differentiated parts of the structured light pattern.
Abstract:
A tracking system generates a structured light pattern in a local area. The system includes an array of lasers that generate light. The array of lasers includes a plurality of lasers and an optical element. The plurality of lasers are grouped into at least two subsets of lasers, and each of the at least two subsets of lasers is independently switchable. The optical element includes a plurality of cells that are each aligned with a respective subset of the array of lasers. Each cell receives light from a corresponding laser of the array of lasers, and each cell individually applies a modulation to the received light passing through the cell to form a corresponding portion of the structured light pattern that is projected onto a local area.