Abstract:
A method of sub-channel feedback in OFDMA systems is provided. A wireless receiving device (STA) receives a radio signal from a transmitting device (AP) over a wide channel in an OFDMA system. The radio signal is transmitted over multiple sub-channels of the wide channel. The STA estimates channel quality information based on the received radio signal for each sub-channel. The STA then sends feedback information to the transmitting device. The feedback information comprises the estimated channel quality information for a selected subset of sub-channels from the wide channel based on a predefined rule. In one embodiment, the feedback information is embedded within an ACK/BA frame or is carried in a frame immediately subsequent to the ACK/BA frame.
Abstract:
A method and system utilized in a wireless communication system transmitting and receiving a multi-user packet is disclosed. The communication system includes a transmitter and a plurality of users in communication therewith. The method and system comprise determining a lowest coding scheme for transmitting the packet; and deriving a coding rate for the efficient transmission of the packet from a standard coding rate by de-puncturing bits in the packet. A system and method in accordance with the present invention provides for an efficient utilization of packet length, and improves the reliability by improving SNR, by lowering the MCS, un-puncturing, and/or repetition. More efficient packed data rates are also provided and both Tx and Rx compute parameters independently.
Abstract:
A communication unit includes: a quadrature transmitter having analog transmit filter(s) for filtering a first quadrature test signal. An analog feedback loopback path selectively first routes the filtered quadrature first test signal to a quadrature receiver. The quadrature receiver has: at least one analog receive filter for further filtering the filtered quadrature first test signal; and a quadrature receive baseband circuit arranged to receive and decode the further filtered quadrature first test signal. The quadrature transmitter is arranged to receive a second quadrature test signal and the analog feedback loopback path selectively routes a filtered quadrature second test signal to the quadrature receiver via a second route such that the quadrature receive baseband circuit is arranged to determine a frequency-dependent quadrature imbalance of at least one component in the transmitter/receiver based on the decoded further filtered first quadrature test signal and the decoded further filtered second quadrature test signal.