Abstract:
A feedthrough signal transmission apparatus, fabricated on a single silicon, includes a plurality of feedthrough signal transmission circuits and a permanently on control cell that is coupled to the feedthrough signal transmission circuits, where each feedthrough signal transmission circuit of the feedthrough signal transmission circuits may include at least one sub-circuit that is kept in a power on state when the sub-circuit performs feedthrough signal transmission. For example, and the sub-circuit may include a permanently on-for-feedthrough repeater (e.g. a repeater that is kept in the power on state when the repeater performs feedthrough signal transmission). In addition, the permanently on control cell may be configured to maintain the power on state of the sub-circuit when the sub-circuit performs feedthrough signal transmission. For example, sub-circuits of the feedthrough signal transmission circuits are located at grid-based locations, respectively.
Abstract:
A method for arranging an integrated circuit to correct a hold-time violation is provided. A first layout of the integrated circuit is prepared. The first layout includes a plurality of cells including a plurality of cell pins, wires connected between the cells, and one of the cell pins is located in a preservation area. The hold-time violation of the first layout is estimated to obtain an estimation result. A dummy wire structure is designed to be placed in the preservation area according to the estimation result to correct the hold-time violation. The dummy wire structure only contacts the cell pin in the preservation area. A second layout is generated according to the first layout and the designed dummy wire structure. The integrated circuit is arranged according to the second layout.
Abstract:
A feedthrough signal transmission circuit includes a first permanently on cell and a cell controlling unit. The first permanently on cell is arranged to transmit a first control signal. The cell controlling unit is coupled to the first permanently on cell, and includes a power switch and a plurality o buffers. The power switch is coupled to the first permanently on cell, arranged to receive a switch control signal and the first control signal, and selectively output the first control signal according to the switch control signal. The plurality of buffers is coupled to the power switch. Each of the buffers is arranged to buffer a data input only when powered by the first control signal output from the power switch.
Abstract:
A feedthrough signal transmission circuit includes a first permanently on cell and a cell controlling unit. The first permanently on cell is arranged to transmit a first control signal. The cell controlling unit is coupled to the first permanently on cell, and includes a power switch and a plurality o buffers. The power switch is coupled to the first permanently on cell, arranged to receive a switch control signal and the first control signal, and selectively output the first control signal according to the switch control signal. The plurality of buffers is coupled to the power switch. Each of the buffers is arranged to buffer a data input only when powered by the first control signal output from the power switch.
Abstract:
Methods and apparatuses pertaining to hold-time compensation using free metal segments or other electrically-conductive segments of an IC are described. An integrated circuit (IC) having free segment hold-time compensation may include a monolithic semiconductor substrate which has a first device and a second device disposed thereon. In addition, the IC may include an electrical node electrically connecting the first and second devices. The electrical node may include one or more electrically-conductive elements that contribute to a total capacitance at the electrical node such that the total capacitance at the electrical node has a value that fulfills a hold-time requirement at the electrical node.