Abstract:
Disclosed herein are a high-temperature structure for measuring properties of a curved thermoelectric device, which is capable of precisely measuring the properties of a medium-temperature curved thermoelectric device that is applied to a tube-type waste heat source and is used in research, and a system and a method for measuring the properties using the same. The high-temperature structure may include a plurality of rod-shaped cartridge heaters, and a heating element having a surface that is a curved surface coming into contact with a lower end of the curved thermoelectric device, having a plurality of holes for accommodating the plurality of cartridge heaters, and directly heating the lower end of the curved thermoelectric device.
Abstract:
The present invention provides: an electrode-supporting type of gas-separation membrane module for selectively effecting the passage of a gas via an electron exchange reaction due to a coupling-material layer and gas exchange via an ion-conducting separation layer; a tubular structure of same; a production method for the tubular structure; and a hydrocarbon-reforming method using the gas-separation membrane module. The present invention is advantageous in that outstanding chemical and mechanical durability can be ensured by using a fluorite-based ion-conducting membrane which is chemically stable in CO2 and H2O atmospheres in particular, at high temperature, and in that a pure gas can be produced inexpensively since the passage of gas occurs due to an internal circuit even without applying a voltage from the outside.
Abstract:
This invention relates to a metalized skutterudite thermoelectric material having improved long-term stability and a method of manufacturing the same, wherein the skutterudite thermoelectric material is metalized with a multilayer structure including a Ti layer for preventing the diffusion of the skutterudite thermoelectric material and a Fe—Ni layer for preventing an increase in the thickness of an intermetallic compound layer, whereby the performance of the skutterudite thermoelectric material does not deteriorate due to diffusion and formation of the intermetallic compound even upon long-term use, thus exhibiting improved stability of use, and moreover, the lifetime and stability of a thermoelectric power generation module using the skutterudite thermoelectric material can be increased, whereby the power generation efficiency of the thermoelectric power generation module can be increased in the long term.
Abstract:
A unit cell includes an air inlet/outlet that is formed on a frame unit rather than being installed in a fuel electrode (anode) to simplify a sealing process, and accordingly, a continuous process using a tape casting technique may be performed. In addition, an electrolyte material that is in contact with an air electrode (cathode) in the frame unit is optimized to improve ion conductivity and a porosity of an upper layer material of the fuel electrode unit is optimized to increase fuel diffusion from a gas channel to an electrolyte layer. In addition, a sealing process performed inside the unit cell or between the unit cells of the stack is stabilized and strongly maintained, and thus a fuel cell using the unit cell and the stack disclosed herein may have excellent economic feasibility and high energy efficiency.