Abstract:
In one embodiment, a method includes receiving a first identifier and a private key after a network device has been included in a data center switch fabric control plane, authenticating the network device based on the private key, sending a second identifier to the network device, and sending a control signal to the network device based on the second identifier. The first identifier is associated with the network device and unique within a segment of the data center switch fabric control plane. The second identifier is unique within the segment of the data center switch fabric control plane.
Abstract:
A computer-implemented method for increasing the scalability of software-defined networks may include (1) maintaining a set of databases collectively configured to (i) store a set of flow entries that direct network traffic within a software-defined network and (ii) facilitate searching the set of flow entries based at least in part on at least one key whose size remains substantially constant irrespective of the number of flow entries within the set of flow entries, (2) detecting a request to perform an operation in connection with a flow of data packets within the software-defined network, (3) identifying at least one attribute of the flow of data packets in the request, and then (4) searching, using the attribute of the flow of data packets as a database key, at least one database within the set of databases to facilitate performing the operation. Various other methods, systems, and apparatuses are also disclosed.
Abstract:
A device may receive configuration information for generating an application probe. The application probe may be used to request network information, associated with an application, from network devices. The device may determine, based on the configuration information, traffic parameters associated with the application. The device may determine a requested type of network information to be requested from the network devices. The device may generate the application probe by including, in the application probe, the traffic parameters and information identifying the requested type of network information. The device may transmit the application probe to a network device of the network devices. The device may receive, from the network device and based on transmitting the application probe, a value associated with the requested type of network information.
Abstract:
A device may receive configuration information for generating an application probe. The application probe may be used to request network information, associated with an application, from network devices. The device may determine, based on the configuration information, traffic parameters associated with the application. The device may determine a requested type of network information to be requested from the network devices. The device may generate the application probe by including, in the application probe, the traffic parameters and information identifying the requested type of network information. The device may transmit the application probe to a network device of the network devices. The device may receive, from the network device and based on transmitting the application probe, a value associated with the requested type of network information.
Abstract:
An output circuit, included in a device, may determine counter information associated with a packet provided via an output queue managed by the output circuit. The output circuit may determine that a latency event, associated with the output queue, has occurred. The output circuit may provide the counter information and time of day information associated with the counter information. The output circuit may provide a latency event notification associated with the output queue. An input circuit, included in the device, may receive the latency event notification associated with the output queue. The input circuit may determine performance information associated with an input queue. The input queue may correspond to the output queue and may be managed by the input circuit. The input circuit may provide the performance information associated with the input queue and time of day information associated with the performance information.
Abstract:
A device may receive an indication to generate a probe packet associated with a tunnel included in a first network. The tunnel may include a first tunnel endpoint and a second tunnel endpoint and may correspond to a path, associated with a second network, between the first tunnel endpoint and the second tunnel endpoint. The device may generate the probe packet including information associated with the tunnel. The device may provide the probe packet, via the first tunnel endpoint, such that the probe packet is received by a network device that lies on the path. The device may receive a response packet, associated with the probe packet and provided by the network device, that includes path information. The path information may include information associated with the network device. The device may store the path information to allow the network device to be identified as lying on the path.
Abstract:
A computer-implemented method for increasing the scalability of software-defined networks may include (1) maintaining a set of databases collectively configured to (i) store a set of flow entries that direct network traffic within a software-defined network and (ii) facilitate searching the set of flow entries based at least in part on at least one key whose size remains substantially constant irrespective of the number of flow entries within the set of flow entries, (2) detecting a request to perform an operation in connection with a flow of data packets within the software-defined network, (3) identifying at least one attribute of the flow of data packets in the request, and then (4) searching, using the attribute of the flow of data packets as a database key, at least one database within the set of databases to facilitate performing the operation. Various other methods, systems, and apparatuses are also disclosed.
Abstract:
A computer-implemented method for increasing the scalability of software-defined networks may include (1) maintaining a set of databases collectively configured to (i) store a set of flow entries that direct network traffic within a software-defined network and (ii) facilitate searching the set of flow entries based at least in part on at least one key whose size remains substantially constant irrespective of the number of flow entries within the set of flow entries, (2) detecting a request to perform an operation in connection with a flow of data packets within the software-defined network, (3) identifying at least one attribute of the flow of data packets in the request, and then (4) searching, using the attribute of the flow of data packets as a database key, at least one database within the set of databases to facilitate performing the operation. Various other methods, systems, and apparatuses are also disclosed.
Abstract:
A device may receive an indication to generate a probe packet associated with a tunnel included in a first network. The tunnel may include a first tunnel endpoint and a second tunnel endpoint and may correspond to a path, associated with a second network, between the first tunnel endpoint and the second tunnel endpoint. The device may generate the probe packet including information associated with the tunnel. The device may provide the probe packet, via the first tunnel endpoint, such that the probe packet is received by a network device that lies on the path. The device may receive a response packet, associated with the probe packet and provided by the network device, that includes path information. The path information may include information associated with the network device. The device may store the path information to allow the network device to be identified as lying on the path.
Abstract:
An output circuit, included in a device, may determine counter information associated with a packet provided via an output queue managed by the output circuit. The output circuit may determine that a latency event, associated with the output queue, has occurred. The output circuit may provide the counter information and time of day information associated with the counter information. The output circuit may provide a latency event notification associated with the output queue. An input circuit, included in the device, may receive the latency event notification associated with the output queue. The input circuit may determine performance information associated with an input queue. The input queue may correspond to the output queue and may be managed by the input circuit. The input circuit may provide the performance information associated with the input queue and time of day information associated with the performance information.