Abstract:
A device may include one or more processors. The device may receive an instruction identifying a set of objects to be generated by a kernel associated with the device. The kernel may generate the set of objects based on receiving information identifying a corresponding set of write operations. The device may provide a first message to cause the kernel to perform first operations corresponding to a first subset of objects of the set of objects. The device may receive one or more notifications indicating whether each operation, of the first operations, was successfully performed. The device may determine, based on whether each operation was successfully performed, a quantity of objects to include in a second subset of objects, of the set of objects. The device may provide a second message to cause the kernel to perform second operations corresponding to the second subset of objects.
Abstract:
The disclosed system may include (1) a modular port concentrator that connects as a modular line card within a router to forward network packets, (2) a profile module, stored in memory, that stores an allowed port configuration profile that defines supported port configurations for the modular port concentrator, (3) a configuration module, stored in memory, that receives an attempted port configuration for the modular line card, (4) an enforcement module, stored in memory, that enforces the allowed port configuration profile by taking remedial action in response to determining that the allowed port configuration profile does not allow the attempted port configuration, and (5) at least one physical processor configured to execute the modular port concentrator, the profile module, the configuration module, and the enforcement module. Various other systems and methods are also disclosed.
Abstract:
A network device may include a packet generator device implemented in hardware. The packet generator device may include a control component, a payload generation component, and an interface element to receive test packet generation information. The test packet generation information may include one or more control inputs, header data that is to be included in one or more test packets, and information regarding a data pattern that is to be included in payload data of the one or more test packets. The one or more control inputs, when provided to the control component, may cause the control component to control the payload generation component to generate the one or more test packets based on the header data and the information regarding the data pattern.
Abstract:
A network device that includes a plurality of packet processing components may receive traffic associated with one or more services. The network device may store state information for each of the plurality of packet processing components, while the plurality of packet processing components are receiving the traffic. The state information may include state configuration information and/or internal storage information. The state information may be stored using a data structure that is internal to the network device and external to the packet processing component. The network device may detect an error that prevents the packet processing component from processing at least a portion of the traffic. The network device may execute, based on detecting the error that prevents the packet processing component from processing at least the portion of the traffic, a recovery procedure that uses the state information to reset the packet processing component to an operational state.
Abstract:
A network device that includes a plurality of packet processing components may receive traffic associated with one or more services. The network device may store state information for each of the plurality of packet processing components, while the plurality of packet processing components are receiving the traffic. The state information may include state configuration information and/or internal storage information. The state information may be stored using a data structure that is internal to the network device and external to the packet processing component. The network device may detect an error that prevents the packet processing component from processing at least a portion of the traffic. The network device may execute, based on detecting the error that prevents the packet processing component from processing at least the portion of the traffic, a recovery procedure that uses the state information to reset the packet processing component to an operational state.
Abstract:
In some embodiments, an apparatus includes a switch device that can be operatively coupled to a network having a set of links. The switch device can receive at a first time, a message having a set of physical coding sublayer (PCS) lanes. The message can include an error notification within a first subset of PCS lanes from the set of PCS lanes and not within a second subset of PCS lanes from the set of PCS lanes. The error notification is associated with signal degradation of a link from the set of links, where the switch device can send a first signal in response to receiving the message at the first time. The switch device can also receive at a second time a message without the error notification, and the switch device can send a second signal in response to receiving the message at the second time.
Abstract:
A network device may receive traffic to be processed by a routing component, and may determine temperatures of an ASIC and an HBM of the routing component at a first time. The network device may determine whether the temperature of the ASIC satisfies a first ASIC temperature threshold or a second ASIC temperature threshold, and may determine whether the temperature of the HBM satisfies a first HBM temperature threshold or a second HBM temperature threshold. The network device may selectively throttle processing of the traffic by a first quantity when the temperature of the ASIC satisfies the first ASIC temperature threshold or the temperature of the HBM satisfies the first HBM temperature threshold, or throttle the processing of the traffic by a second quantity when the temperature of the ASIC satisfies the second ASIC temperature threshold or the temperature of the HBM satisfies the second HBM temperature threshold.
Abstract:
An example network device includes a plurality of network ports that each facilitate one or more network links between the network device and one or more remote devices, a plurality of indicators each configured to represent a status of a respective one of the plurality of network ports on the network device, and processing circuitry configured to reconfigure at least one of the plurality of indicators to represent a link-status of the one or more network links of at least one network port of the network device in response to a command.
Abstract:
A network device may receive traffic to be processed by a routing component, and may determine temperatures of an ASIC and an HBM of the routing component at a first time. The network device may determine whether the temperature of the ASIC satisfies a first ASIC temperature threshold or a second ASIC temperature threshold, and may determine whether the temperature of the HBM satisfies a first HBM temperature threshold or a second HBM temperature threshold. The network device may selectively throttle processing of the traffic by a first quantity when the temperature of the ASIC satisfies the first ASIC temperature threshold or the temperature of the HBM satisfies the first HBM temperature threshold, or throttle the processing of the traffic by a second quantity when the temperature of the ASIC satisfies the second ASIC temperature threshold or the temperature of the HBM satisfies the second HBM temperature threshold.