Abstract:
In the spectroscopy module 1, a light detecting element 4 is provided with a light passing opening 4b through which light made incident into a body portion 2 passes. Therefore, it is possible to prevent deviation of the relative positional relationship between the light passing opening 4b and a light detection portion 4a of the light detecting element 4. Further, an optical element 7, which guides light made incident into the body portion 2, is arranged at the light passing opening 4b. Therefore, light, which is to be made incident into the body portion 2, is not partially blocked at a light incident edge portion of the light passing opening 4b, but light, which is to be made incident into the body portion 2, can be guided securely. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the light detecting element 4 to transmit the light L1, L2. The light detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a light incident opening 42a of the light-passing hole 42 is partially covered by a light transmitting plate 16.
Abstract:
At least one compound ##STR1## is added to mineral building materials modified with polymers in order to increase their adhesive power on foams based on polystyrene.
Abstract:
Manufacture of flame-retardant regenerated cellulose fibres by adding one or more flame-retardant phosphorus comounds to viscose, extruding the viscose-containing mixture thus obtained into a spinning bath, stretching and after treating the resulting filaments or staple fibres. The flame-retardant fibres are made by using as the flame-retardant agent a combination of compounds of the general formula:PN.sub.x O.sub.yin which x stands for a number between 0.09 and 1.7 and y stands for a number between 1.2 and 0, preferably approaching zero as the values of x increase towards 1.7 (component A), with compounds which are selected from phosphoric acid alkylesters, preferably halogen-containing phosphoric acid alkylesters; cyclophosphazenes, polyphosphazenes; tetrakis-(oxymethyl)-phosphonium chloride or hydroxide or its condensation products with ammonia, oxymethylamine, urea or other amines or amides, vinyl compounds containing halogen, phosphonitrogen or phosphorus; and tris-(1-aziridinyl)-phosphine oxide or N-(oxymethyl)-3-phosphonopropionamide, if desired in further combination with a condensation resin (component B).
Abstract:
Alignment marks 12a, 12b, 12c, and 12d are formed on the flat plane 11a of the peripheral edge portion 11 formed integrally with the diffracting layer 8, and when the lens portion 7 is mounted onto the substrate 2, these alignment marks 12a, 12b, 12c and 12d are positioned to the substrate 2, thereby making exact alignment of the diffracting layer 8 with respect to the light detecting portion 4a of the light detecting element 4, for example, not by depending on a difference in curvature radius of the lens portion 7. In particular, the alignment marks 12a, 12b, 12c and 12d are formed on the flat plane 11a, thereby image recognition is given to exactly detect positions of the alignment marks 12a, 12b, 12c and 12d, thus making it possible to make exact alignment.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a lisht detecting element 4 having a lisht detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the lisht detecting element 4 to transmit the light L1, L2. The lisht detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a raised portion 43 in a rectangular annular shape is formed on a rear plane 4a of the body portion 2 side in the lisht detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the light detecting element 4 to transmit the light L1, L2. The light detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a reservoir portion 43 is formed on a rear plane 4a of the body portion 2 side in the light detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the light detecting element 4 to transmit the light L1, L2. The light detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a light incident opening 42a of the light-passing hole 42 is partially covered by a light transmitting plate 16.
Abstract:
Since a spectroscopic module (1) has a plate-shaped body section (2), the spectroscopic module can be reduced in size by reducing the thickness of the body section (2). Moreover, since the body section (2) is plate-shaped, the spectroscopic module (1) can be manufactured, for example, by using a wafer process. More specifically, by providing lens sections (3), diffraction layers (4), reflection layers (6) and light detecting elements (7) in a matrix form on a glass wafer which becomes many body sections (2) and dicing the glass wafer, many spectroscopic modules (1) can be manufactured. This enables easy mass production of spectroscopic modules (1).
Abstract:
Binders for non-tacky, non-soiling, flexible coatings based on aqueous copolymer dispersions which contain zinc-amine complexes essentially consist of(A) from 99 to 90% by weight of a (meth)acrylate copolymer dispersion whose polymer has a glass transition temperature of from -40.degree. to -1.degree. C. and(B) from 1 to 10% by weight of a water-soluble zinc-amine complex salt of a polymeric carboxylic acid,the percentages by weight being based on the total amount of polymer.