Tunneling Magnetoresistance Device With Magnetically Soft High Moment Free Layer

    公开(公告)号:US20240233999A1

    公开(公告)日:2024-07-11

    申请号:US18093732

    申请日:2023-01-05

    CPC classification number: H01F10/3254 G11B5/3909 H01F10/3272

    Abstract: The present embodiments relate to a tunnel magnetoresistance (TMR) element. The TMR element can include a free layer comprising a metallic alloy that is doped using a dopant element. In some instances, the metallic alloy comprises a cobalt-iron (CoFe) alloy. The present embodiments relate to doping a small amount of an element (e.g., hafnium (Hf), tantalum (Ta), Yttrium (Y)) in a high flux CoFe layer of a tunnel magnetoresistance (TMR) element. The small amount of dopant can suppress a long-range order in the CoFe film. The amorphous state of a CoFe alloy can be induced by the dopant and result in a magnetically soft layer. A resistance of the TMR element can be modified based on an application of an external magnetic field to the free layer and the pin layer.

    Adaptive bias control for magnetic recording head

    公开(公告)号:US11380355B2

    公开(公告)日:2022-07-05

    申请号:US17081235

    申请日:2020-10-27

    Abstract: A read head includes a permanent magnet (PM) layer formed up to 100 nm behind a free layer where PM layer magnetization may be initialized in a direction that adjusts free layer (FL) bias point, and shifts sensor asymmetry (Asym) closer to 0% for individual heads at slider or Head Gimbal Assembly level to provide a significant improvement in device yield. Asym is adjusted using different initialization schemes and initialization directions. With individual heads, initialization direction is selected based on a prior measurement of asymmetry. The PM layer is CoPt or CoCrPt and has coercivity from 500 Oersted to 1000 Oersted. The PM layer may have a width equal to the FL, or a width equal to the cross-track distance between outer sides of the longitudinal bias layers. In another embodiment, the PM layer adjoins a backside of the top shield.

    Magnetic flux guiding device with antiferromagnetically coupled (AFC) spin polarizer in assisted writing application

    公开(公告)号:US10522174B1

    公开(公告)日:2019-12-31

    申请号:US16549139

    申请日:2019-08-23

    Abstract: A spin torque transfer (STT) assisted magnetic recording structure is disclosed wherein a magnetic flux guiding (MFG) device is formed between a main pole (MP) trailing side and a trailing shield (TS). The MFG device has a field generation layer (FGL) separated from first and second spin polarization (SP) layers by first and second non-magnetic layers, respectively. First and second SP layers have magnetizations in opposite directions so that when a direct current of sufficient magnitude is applied from the MP to TS, or from the TS to MP in other embodiments, FGL magnetization flips to a direction toward the MP and opposes a write gap field flux thereby enhancing the write field. Additive torque from two SP layers on the FGL enables lower current density for FGL flipping or a greater degree of FGL flipping at a given current density compared with MFG schemes having a single SP layer.

    Writer with laterally graded spin layer MsT

    公开(公告)号:US11545175B2

    公开(公告)日:2023-01-03

    申请号:US17691869

    申请日:2022-03-10

    Abstract: A method of forming a spin transfer torque reversal assisted magnetic recording (STRAMR) writer is disclosed wherein a spin torque oscillator (STO) has a flux guiding layer (FGL) wherein magnetization flips to a direction substantially opposing the write gap (WG) field when sufficient current (IB) density is applied across the STO between a trailing shield and main pole (MP) thereby enhancing the MP write field. The FGL has a center portion with a larger magnetization saturation×thickness (MsT) than in FGL outer portions proximate to STO sidewalls. Accordingly, lower IB density is necessary to provide a given amount of FGL magnetization flipping and there is reduced write bubble fringing compared with writers having a FGL with uniform MsT. Lower MsT is achieved by partially oxidizing FGL outer portions. In some embodiments, there is a gradient in outer FGL portions where MsT increases with increasing distance from FGL sidewalls.

    Adaptive Bias Control for Magnetic Recording Head

    公开(公告)号:US20220335969A1

    公开(公告)日:2022-10-20

    申请号:US17856585

    申请日:2022-07-01

    Abstract: A read head includes a permanent magnet (PM) layer formed up to 100 nm behind a free layer where PM layer magnetization may be initialized in a direction that adjusts free layer (FL) bias point, and shifts sensor asymmetry (Asym) closer to 0% for individual heads at slider or Head Gimbal Assembly level to provide a significant improvement in device yield. Asym is adjusted using different initialization schemes and initialization directions. With individual heads, initialization direction is selected based on a prior measurement of asymmetry. The PM layer is CoPt or CoCrPt and has coercivity from 500 Oersted to 1000 Oersted. The PM layer may have a width equal to the FL, or in another embodiment, the PM layer adjoins a backside of the top shield and has a width equal to or greater than that of the FL.

    Magnetic Flux Guiding Device With Spin Torque Oscillator (STO) Film Having Negative Spin Polarization Layers In Assisted Writing Application

    公开(公告)号:US20240371402A1

    公开(公告)日:2024-11-07

    申请号:US18769275

    申请日:2024-07-10

    Abstract: A STRAMR structure is disclosed. The STRAMR structure can include a spin torque oscillator (STO) device in a WG provided between the mail pole (MP) trailing side and a trailing shield. The STO device, includes: a flux guiding layer that has a negative spin polarization (nFGL) with a magnetization pointing substantially parallel to the WG field without the current bias and formed between a first spin polarization preserving layer (ppL1) and a second spin polarization preserving layer (ppL2); a positive spin polarization (pSP) layer that adjoins the TS bottom surface; a non-spin polarization preserving layer (pxL) contacting the MP trailing side; a first negative spin injection layer (nSIL1) between the ppL2 and a third spin polarization preserving layer (ppL3); and a second negative spin injection layer (nSIL2) between the ppL3 and the pxL, wherein the nFGL, nSIL1, and nSIL2 have a spin polarization that is negative.

    Adaptive Bias Control for Magnetic Recording Head

    公开(公告)号:US20220130419A1

    公开(公告)日:2022-04-28

    申请号:US17081235

    申请日:2020-10-27

    Abstract: A read head includes a permanent magnet (PM) layer formed up to 100 nm behind a free layer where PM layer magnetization may be initialized in a direction that adjusts free layer (FL) bias point, and shifts sensor asymmetry (Asym) closer to 0% for individual heads at slider or Head Gimbal Assembly level to provide a significant improvement in device yield. Asym is adjusted using different initialization schemes and initialization directions. With individual heads, initialization direction is selected based on a prior measurement of asymmetry. The PM layer is CoPt or CoCrPt and has coercivity from 500 Oersted to 1000 Oersted. The PM layer may have a width equal to the FL, or a width equal to the cross-track distance between outer sides of the longitudinal bias layers. In another embodiment, the PM layer adjoins a backside of the top shield.

Patent Agency Ranking