Abstract:
A method for removing a rotor blade from a wind turbine may generally include installing a blade sock around an outer perimeter of the rotor blade, coupling a support cable to the blade root, lowering the rotor blade relative to the hub using the support cable, coupling at least one pulley cable between the rotor blade and a winch using at least one pulley, moving the pulley cable relative to the pulley to lower the rotor blade relative to the hub, applying a force through the blade sock as the pulley cable is moved relative to the pulley in order to control an orientation of the rotor blade and further lowering the rotor blade to a location on or adjacent to the support surface.
Abstract:
A handling device for a rotor blade of a wind turbine e.g. that can be used for lifting, lowering, transporting, or storing the rotor blade includes at least one cradle for supporting the rotor blade and a moldable support pad secured to the cradle. The moldable support pad includes an outer covering filled with a plurality of granules that act as a fluid when the rotor blade is placed atop the support pad such that a shape of the support pad substantially matches a profile of at least one of the exterior surfaces of the rotor blade.
Abstract:
Combustor maintenance assemblies, tools and methods for manipulating cross-fire tubes in combustor assemblies are provided. A tool includes a base and an arm pivotally connected to the base. The arm includes an effort portion and a load portion, the load portion extendable into a passage defined by the compressor discharge casing. The tool further includes a contact member extending from the load portion to contact the cross-fire tube. The contact member includes a head end for contacting a second end of the cross-fire tube, and a joint disposed between the head end and the load portion, the joint allowing movement of the head end relative to the load portion. The arm is movable such that the contact member contacts the cross-fire tube and applies a force to the cross-fire tube generally along a longitudinal axis of the cross-fire tube.
Abstract:
A method of replacing a wind turbine blade includes connecting a plurality of first hoisting devices between a wind turbine support hub and the wind turbine blade, suspending the wind turbine blade from the wind turbine support hub through the plurality of first hoisting devices, connecting a plurality of second hoisting devices between the wind turbine support hub and the wind turbine blade, supporting the wind turbine support blade with the plurality of second hoisting devices, disconnecting the plurality of first hoisting devices from the wind turbine blade, and lowering the wind turbine blade to the ground.
Abstract:
A method for servicing a rotor of a generator includes the steps of, dismantling a non-drive end of the generator, removing insulation from portions of an existing Wye ring and existing connection lugs, removing portions of the existing Wye ring near the existing connection lugs, installing a replacement Wye ring in the generator, connecting the replacement Wye ring to the existing connection lugs, and insulating the replacement Wye ring and the existing connection lugs. The method is performed on the generator in-situ.
Abstract:
A method for repairing or servicing a wye ring of a generator includes the steps of, dismantling the generator to gain access to the wye ring, determining a fault location in the wye ring; and attaching a patch to the wye ring in an area of the fault location. The patch provides an electrical path around the fault location so that the generator is repaired.
Abstract:
A device for heating a bearing race mounted on a shaft including a quartz halogen lamp for heating the bearing race and a reflector for reflecting heat from the quartz halogen lamp towards the bearing race.
Abstract:
A method of replacing a wind turbine blade includes suspending the wind turbine blade from support hub of a wind turbine, connecting one or more cable climbing members between the support hub and the wind turbine blade, and lowering the one or more cable climbing members and the wind turbine blade from the support hub.
Abstract:
A method and system are provided for cooling a heat-exchanger in a wind turbine that has an electric generator with a cooling air flow directed therethrough. Effluent cooling air flow from the electric generator is directed into an air ejector pump and acts as motive air through the air ejector pump. Cold air is drawn into the air ejector pump by the vacuum generated by the motive air moving through the air ejector pump. The heat exchanger is disposed in-line with the cold air flow so that the cold air is drawn through the heat-exchanger, removes heat from the fluid circulated through the heat-exchanger, and becomes heated air that is combined with the motive air and discharged from the nacelle.
Abstract:
A system for enabling servicing of a rotor of a wind turbine has a rotor blade sling with at least one strap configured to be placed over the top of a rotor blade in a ten o'clock position or a two o'clock position. One or more rigid bars extend from the hub and out away from the hub, and the one or more rigid bars are coupled to the at least one strap. One or more support straps are coupled to the at least one strap, and the one or more support straps are configured to couple and support a rotor blade in a six o'clock position.