Abstract:
A stator vane removal system includes a reaction platform configured to couple between opposing sides of a slot defined in an inner surface of a casing of a rotary machine. At least one stator vane is retained in the slot. The reaction platform includes at least one wedge surface. The system also includes an actuator configured to couple to the reaction platform. The at least one wedge surface facilitates inducing a coupling force exerted by the reaction platform to the opposing sides of the slot when the actuator applies a pushing force to the at least one stator vane in the slot.
Abstract:
An apparatus for cleaning an inner surface of a slot includes a first block segment that has an outer perimeter that conforms to and fits inside the inner surface of the slot. A first cleaning pad is connected to the first block segment and extends beyond at least a portion of the outer perimeter of the first block segment.
Abstract:
A milling tool is disclosed. The tool may include a base including a clamp for coupling to a selected mounting slot of a plurality of slots of the rotor; a milling tool including a motorized milling head; and a motorized linear actuator coupling the milling tool to the base. The base mounts the motorized linear actuator at an acute angle relative a portion of the slot to allow the motorized linear actuator to linearly move the milling tool to machine the portion of the slot. The portion of the slot may include, for example, an end face and, more particularly, a root corner of the slot where a cooling slot flange extends from the root of the slot. The milling tool may be portable.
Abstract:
A cutting tool locating device for a forming an opening in a gear includes a guide member configured and disposed to be fixedly connected to gear mounted to a shaft, and an alignment puck moveably mounted to the guide member. The alignment puck includes a bushing configured and disposed to align with a recess formed in the shaft.
Abstract:
A system for repairing dovetail slots includes a slot adaptor having a body configured and disposed to nest between first and second side walls of a dovetail slot, and a tool holder configured to be coupled with the slot adaptor. The tool holder includes a tool guidance system configured and disposed to direct a tool into contact with one of the first and second side walls of the dovetail slot. A cutting tool is mounted in the tool holder. The cutting tool includes a tapered surface configured and disposed to form a tapered recess in the one of the first and second side walls of the dovetail slot.
Abstract:
Various embodiments include a method of displacing a turbomachine component from position in a first slot of a turbomachine spacer disk. The method can include detachably affixing a mounting member of a displacement apparatus to a second slot in the gas turbomachine spacer disk using an attachment device, rotating a displacement arm of the displacement apparatus until the displacement arm contacts the turbomachine component, and displacing the turbomachine component from the position within the first slot by linearly actuating the displacement arm with a linear actuator.
Abstract:
A tool for removing a fastener head from a fastener includes a body that includes an alignment surface configured to couple substantially flush against a structural surface proximate the fastener head. A blade coupled to the body includes a tip configured to sever the fastener head from the fastener as the blade is moved in a first direction generally parallel to the alignment surface from a first blade position to a second blade position. The tool also includes a force transfer member coupled to the body for movement parallel to a longitudinal axis of the force transfer member. The longitudinal axis is oriented at an acute angle with respect to the first direction. The force transfer member is configured to move the blade from the first blade position to the second blade position in response to an impulse received by the force transfer member.
Abstract:
Various embodiments include methods adapted to displace turbomachine components from a location within a turbomachine. In some embodiments, a method of displacing a turbine bucket from a turbomachine wheel slot using a displacement apparatus, includes: detachably engaging an engagement arm of the displacement apparatus to the turbine bucket, the engagement arm attached to a linear actuator coupled to a body of the displacement apparatus, and the engagement arm adapted to be actuated in a first axial direction by the linear actuator; contacting the turbomachine wheel with at least two contacting portions of the body of the displacement apparatus; and displacing the turbine bucket from a position within a slot of the turbomachine wheel in the first axial direction by linearly actuating the engagement arm with the linear actuator.
Abstract:
Various embodiments include an apparatus for installing or removing a transition piece (TP) in a gas turbine. The apparatus can include: a control arm assembly sized to rest within an opening in the gas turbine; a guide system coupled to the control arm assembly, the guide system for transporting the TP within the opening in the gas turbine; and a counter balance coupled to the guide system, the counter balance for countering weight of the TP during the installing or the removing of the TP in the gas turbine.
Abstract:
A system for modifying a slot in a rotor includes a drill, a clamp connected to the drill and configured to engage with an interior surface of the slot, and means for supporting the drill from a stationary platform adjacent to the rotor. A method for modifying a slot in a rotor includes connecting a coupling to a stationary platform adjacent to the rotor, connecting a drill to the coupling, and locating the drill proximate to the slot. The method further includes inserting a clamp into the slot, engaging the clamp with an interior surface of the slot, and operating the drill to create a cavity in the slot.