Abstract:
Embodiments of the present disclosure include apparatuses and systems used for the positioning of equipment. An apparatus according to an embodiment of the present disclosure can include a height adjustable table; a platform coupled to the height adjustable table; a tilt adjuster coupled to the platform, the tilt adjuster being configured to tilt the platform relative to the height adjustable table; an equipment support structure slidably connected to the platform, the equipment support structure being configured to support a piece of equipment; a drive mechanism coupled to the platform and configured to slidably move the equipment support structure across the platform; and a bracket coupled to the equipment support structure, wherein the bracket is configured to removably attach the piece of equipment.
Abstract:
A tool for removing a component from a turbomachine is provided. The tool includes a body having a connection portion for engaging the component. The tool additionally includes a force section connected to the body and configured to transfer a force to the connection portion in a direction at an acute angle relative to longitudinal axis of a dovetail slot of a rotor wheel adjacent to the component.
Abstract:
A tool for removing a component from a turbomachine is provided. The tool includes a body having an alignment portion and a connection portion. The alignment portion defines a longitudinal axis and a cross sectional shape complementary to a slot defined in a rotor wheel of the turbomachine. When the tool is positioned in the slot, the connection portion is configured to contact the component. The tool additionally includes a force section connected to the body and configured to transfer a force to the connection portion in a direction substantially parallel to the longitudinal axis of the alignment portion.
Abstract:
Various embodiments include apparatuses adapted to displace components from a location within a turbomachine. In some embodiments an apparatus for displacing a component of a gas turbine from a first slot in a spacer disk includes a body including a mounting member configured to affixedly attach to a second slot of the spacer disk, a linear actuator coupled to the body and a displacement arm coupled to the linear actuator, the displacement arm actuatable in a first axial direction by the linear actuator to contact the component and displace the component relative to the first slot.
Abstract:
Various embodiments include a service apparatus for a turbomachine. The service apparatus can include: a frame for coupling to an opening in the turbomachine; a bridge member operably coupled to the frame and spanning a width of the frame, the bridge member being substantially movable along a length of the frame; and a crane member operably coupled to the bridge member, the crane member being substantially movable along the width of the frame, wherein the crane member includes at least one attachment device for attaching to an object within the turbomachine.
Abstract:
An apparatus for lifting an inner casing of a turbine includes a base, an arm, a guide roller, and an adjustment system. The arm has a first end and a second end, and is pivotally connected to the base intermediate the first end and the second end. The guide roller is operatively coupled to the first end of the arm to rotatably engage an exterior surface of the inner casing, and an adjustment system extending from the base and engaging the arm to change an angular position of the arm relative to the base and adjust a position of the guide roller relative to the exterior surface of the inner casing.
Abstract:
Various embodiments include a method of displacing a turbomachine component from position in a first slot of a turbomachine spacer disk. The method can include detachably affixing a mounting member of a displacement apparatus to a second slot in the gas turbomachine spacer disk using an attachment device, rotating a displacement arm of the displacement apparatus until the displacement arm contacts the turbomachine component, and displacing the turbomachine component from the position within the first slot by linearly actuating the displacement arm with a linear actuator.
Abstract:
Various embodiments include methods adapted to displace turbomachine components from a location within a turbomachine. In some embodiments, a method of displacing a turbine bucket from a turbomachine wheel slot using a displacement apparatus, includes: detachably engaging an engagement arm of the displacement apparatus to the turbine bucket, the engagement arm attached to a linear actuator coupled to a body of the displacement apparatus, and the engagement arm adapted to be actuated in a first axial direction by the linear actuator; contacting the turbomachine wheel with at least two contacting portions of the body of the displacement apparatus; and displacing the turbine bucket from a position within a slot of the turbomachine wheel in the first axial direction by linearly actuating the engagement arm with the linear actuator.
Abstract:
Various embodiments include a service apparatus for a turbomachine. The service apparatus can include: a frame for coupling to an opening in the turbomachine; a bridge member operably coupled to the frame and spanning a width of the frame, the bridge member being substantially movable along a length of the frame; and a crane member operably coupled to the bridge member, the crane member being substantially movable along the width of the frame, wherein the crane member includes at least one attachment device for attaching to an object within the turbomachine.
Abstract:
Various embodiments include an apparatus for installing or removing a transition piece (TP) in a gas turbine. The apparatus can include: a control arm assembly sized to rest within an opening in the gas turbine; a guide system coupled to the control arm assembly, the guide system for transporting the TP within the opening in the gas turbine; and a counter balance coupled to the guide system, the counter balance for countering weight of the TP during the installing or the removing of the TP in the gas turbine.