Abstract:
A rogue ONU detection and recovery method in a PON network includes steps of: monitoring upstream signals transmitted from a plurality of ONUs to an OLT to acquire LOS signal information and FEC error information; sensing an operation of the rogue ONU in the PON network on the basis of the LOS signal information and the FEC error information; and deactivating at least one of the plurality of ONUs and recovering the rogue ONU to a normal ONU according to whether or not the operation of the rogue ONU is released.
Abstract:
A method of tuning a wavelength of a tunable ONU in a TWDM-PON is provided. The method includes transmitting a wavelength change request message from a source OLT to request the ONU to change a wavelength thereof from a first wavelength to a second wavelength and in response to the wavelength change request message, transmitting a wavelength change response message from the ONU to the source OLT to indicate whether or not the ONU can change a wavelength thereof. The wavelength change request message is ID information for specifying an ONU that is requested to change a wavelength thereof, and the message may comprise one of the following: system ONU ID, channel ONU ID, and individual ONU ID.
Abstract:
Disclosed are a function split structure for a mobile convergence optical transmission network and a method of providing coordinated multi-point technology using the same. The mobile convergence optical transmission network may include a centralized unit (CU), a distributed unit (DU) connected to the CU, a transport node (TN) of an optical transmission network connected to the DU via a first interface, an aggregated unit (AU) connected to a transport unit (TU) of the optical transmission network via the first interface, and a radio unit (RU) connected to the AU via a second interface corresponding to a split structure for a lower layer than the first interface.
Abstract:
An optical line terminal (OLT) accumulates and stores a user frame for each physical layer identifier (PLID) to efficiently use a plurality of lanes used for downstream transmission from the OLT to an optical network unit (ONU). The OLT envelopes payloads that are accumulatively stored for the respective PLIDs based on a transmission rate supported by a corresponding ONU, combines an envelope header based on an envelope payload unit, and transmits an envelope frame. The OLT selects an available lane from among a plurality of lanes and may transmit the envelope frame through the selected lane.
Abstract:
Provided are a power management method and apparatus of an ONU supporting a slicing function. A power management method performed by a power management apparatus of an ONU supporting a slicing function includes receiving a first message for discovering a power management attribute of an ONU including at least one slice from an optical line terminal (OLT), transmitting a second message including the power management attribute of the ONU to the OLT in response to the first message received, receiving a third message for setting up a power management parameter for each slice included in the ONU from the OLT, setting up the power management parameter for each slice included in the ONU based on the third message received, and transmitting a fourth message including a set up result of the power management parameter for each slice included in the ONU to the OLT.
Abstract:
An integrated dynamic bandwidth allocation method and apparatus in a passive optical network (PON) are provided. The bandwidth allocation method performed by an optical line terminal (OLT) includes generating a service level agreement (SLA) table including an SLA required for calculation for bandwidth allocation corresponding to at least one service queue included in at least one optical network unit (ONU) connected to the OLT, calculating maximum allocatable bandwidths for respective predetermined cycles based on the generated SLA table, and, when a service queue requiring bandwidth allocation is present in the ONU, performing bandwidth allocation according to different bandwidth allocation methods based on a priority level of the service queue using the calculated maximum allocatable bandwidths.
Abstract:
A bandwidth allocation apparatus and method for providing a low-latency service in an optical network that may guarantee low-latency requirements and improve a network utilization rate by allocating a static bandwidth to an ONU requiring low latency within an allocable bandwidth and by allocating a dynamic bandwidth to an ONU not requiring the low latency within a remaining bandwidth.
Abstract:
A frame conversion-based mid-span extender includes: a 10-Gigabit-capable Optical Network Unit (XG-ONU) optical module configured to transmit and receive a wavelength signal of a 10-Gigabit-capable Optical Line Terminal (XG-OLT); a frame converter configured to perform conversion between a 10-Gigabit-capable Passive Optical Network (XG-PON) frame and a Gigabit-capable Passive Optical Network (G-PON) frame; and an Optical Line Terminal (OLT) enabled to transmit and receive a wavelength of an Optical Network Unit (ONU).
Abstract:
Disclosed is a method of registering a new optical network unit (ONU) to be performed by an optical line terminal (OLT). The method includes transmitting a ranging notification message to a centralized unit (CU)/distributed unit (DU) to register the new ONU, receiving scheduling information for registering the new ONU from the CU/DU in response to the ranging notification message, transmitting a serial number request message to a service region in which ONUs are present based on the received scheduling information, and when the serial number response message is received from the new ONU in response to the serial number request message, registering the new ONU that transmits a serial number request message. The transmitting of the serial number request message is performed through a multi-quiet zone of a short period.
Abstract:
A cooperative dynamic bandwidth allocation (CO-DBA) method in a structure in which a mobile network and an optical access network are combined allows the mobile network and the optical access network to share mobile scheduling information in advance and allocate bandwidths in advance, and thus prevent a latency in upstream transmission of mobile traffic.