Abstract:
Provided is a power control and link adaptation method for compensating for a long round trip delay time and slow channel fading in a long term evolution (LTE)-based mobile communication system having a long round trip delay time, similar to a satellite mobile system, the method that may compensate for the long round trip delay time of the satellite mobile system in which a distance between a base station and a terminal is relatively long, when compared to a terrestrial LTE system, support a modulation and coding scheme (MCS) level requested by a terminal, by predicting a channel after the round trip delay time elapses, maintain compatibility within an existing LTE frame, by generating a transmit power control (TPC) instruction for an uplink closed-loop power control, on a frame by frame basis, and compensate for slow channel fading of the satellite mobile system.
Abstract:
In a system that performs mobile communication using at least two beams, by determining a size of a beam based on information that is acquired for mobile terminals attempting an access, a beam of a form having an adaptive size is formed and thus communication is performed. A beam sector including a plurality of beam segments and a beam segment that forms a beam of a minimum size within entire coverage is set, and while forming one beam per beam sector, a size of a beam is adaptively determined.
Abstract:
Provided is a communication method for downlink transmission with a low peak to average power ratio (PAPR) and compatibility with long-term evolution (LTE)-based downlink transmission in an LTE-based mobile communication system in which the performance degradation may occur due to a high PAPR in multi-carrier transmission caused by non-linearity of a power amplifier in a base station including a satellite, to have the effects of supporting a terminal that reuses an existing terrestrial LTE chipset and a terminal that enables downlink reception with a low PAPR with no collision between the terminals, and of implementing an integrated satellite/terrestrial mobile communication system with a minimum change of an existing mobile communication system to ensure economic efficiency.
Abstract:
A random access method in a mobile communication system, the random access method for supporting random access with a cell size of about 100 kilometers (km) or more and a power limited terminal, and a preamble structure thereof are provided. While a conventional long term evolution (LTE) random access preamble sequence is reused, a difference in a round-trip delay time between terminals in a large cell area may be compensated. Additionally, since higher power transmission is achieved per bandwidth, a higher link margin may be secured. Also, compatibility with resource scheduling of the conventional LTE may be maintained. Random access may be supported in a large cell, and a preamble structure of a satellite mobile communication may be implemented based on terrestrial LTE.
Abstract:
A random access method in a mobile communication system, the random access method for supporting random access with a cell size of about 100 kilometers (km) or more and a power limited terminal and a preamble structure thereof are provided. While a conventional long term evolution (LTE) random access preamble sequence is reused, a difference in a round-trip delay time between terminals in a large cell area may be compensated. Additionally, since higher power transmission is achieved per bandwidth, a higher link margin may be secured. Also, compatibility with resource scheduling of the conventional LTE may be maintained. Random access may be supported in a large cell, and a preamble structure of a satellite mobile communication may be implemented based on terrestrial LTE.
Abstract:
Provided is a communication method for downlink transmission with a low peak to average power ratio (PAPR) and compatibility with long-term evolution (LTE)-based downlink transmission in an LTE-based mobile communication system in which the performance degradation may occur due to a high PAPR in multi-carrier transmission caused by non-linearity of a power amplifier in a base station including a satellite, to have the effects of supporting a terminal that reuses an existing terrestrial LTE chipset and a terminal that enables downlink reception with a low PAPR with no collision between the terminals, and of implementing an integrated satellite/terrestrial mobile communication system with a minimum change of an existing mobile communication system to ensure economic efficiency.
Abstract:
Provided is a power control and link adaptation method for compensating for a long round trip delay time and slow channel fading in a long term evolution (LTE)-based mobile communication system having a long round trip delay time, similar to a satellite mobile system, the method that may compensate for the long round trip delay time of the satellite mobile system in which a distance between a base station and a terminal is relatively long, when compared to a terrestrial LTE system, support a modulation and coding scheme (MCS) level requested by a terminal, by predicting a channel after the round trip delay time elapses, maintain compatibility within an existing LTE frame, by generating a transmit power control (TPC) instruction for an uplink closed-loop power control, on a frame by frame basis, and compensate for slow channel fading of the satellite mobile system.