Abstract:
A method is presented herein that involves mixing a self-healing coating solution, a dispersion of colloidal nanoparticles, and at least one of a solvent or a surfactant, to obtain a composition, wherein the composition is capable of being cured into a coating that is transparent to visible light. An ophthalmic lens product obtained by this method is also presented herein.
Abstract:
The present invention is drawn to an optical article comprising (a) a transparent optical substrate and (b) a transparent coating, said transparent coating being the outermost coating of the optical article and consisting essentially of a polythiol-ene matrix obtained by curing a liquid monomer mixture comprising at least one polyfunctional thiol and at least one polyfunctional allyl monomer, said cured polythiol-ene matrix having a glass transition temperature comprised in the range of from 40° C. to 70° C., and from 0.5 to 7% by weight of conductive mineral colloids homogeneously dispersed therein. It is also drawn to a method for preparing such an optical article and to a method for repairing scratches on such an optical article by heating.
Abstract:
The present disclosure provides heat-curable coating compositions for optical articles. The coating compositions include a multifunctional epoxy monomer in combination with a UV absorber. The inclusion of at least one multifunctional epoxy monomer and at least one UV absorber provide epoxy coatings that exhibit excellent adhesion on a variety of lens substrates.
Abstract:
The present invention relates to a heat-curable composition comprising at least one epoxy monomer comprising two or three epoxy groups, which is not a hydrolysis-polymerizable silicon compound, at least one epoxy compound bearing at least one silicon atom having at least one hydrolyzable group directly linked to the silicon atom and at least one epoxy group, and at least one epoxy ring-opening catalyst. The composition comprises at least 50% by weight of compounds having at least one epoxy group, relative to the total weight of polymerizable compounds present in the composition and provides upon pre-curing a tack-free coating that can be removed by treatment with a solution of sodium hydroxide, and upon post-curing a coating that cannot be removed by treatment with a solution of sodium hydroxide.
Abstract:
Described is a thiol-ene composition that includes a resinous mixture of at least a first monomer and at least a second monomer, in which the first monomer is a polyfunctional allyl monomer and the second monomer is a polyfunctional thiol and the molar ratio of the first monomer to the second monomer is about 60:40 to about 80:20. Said composition further includes conductive colloidal particles in an amount between about 4 wt % and about 7 wt % of the total composition. When cured, a formed composition offers self-healing properties and resistance to abrasions and scratches that exceed the levels found in comparative thiol-enes that either lack the addition of the conductive colloidal particles and/or have a less effective ratio of first monomer to second monomer.
Abstract:
A method is presented herein that involves mixing a self-healing coating solution, a dispersion of colloidal nanoparticles, and at least one of a solvent or a surfactant, to obtain a composition, wherein the composition is capable of being cured into a coating that is transparent to visible light. An ophthalmic lens product obtained by this method is also presented herein.
Abstract:
Curable composition providing, upon curing, an abrasion resistant, transparent, antistatic coating comprising: a) at least one conductive polymer, b) colloidal particles of at least one non-conductive oxide, c) at least one binder comprising at least one epoxysilane having at least two hydrolysable groups directly linked to the Si atom of the epoxysilane, and/or its hydrolysis product, said at least one conductive polymer and said colloidal particles of at least one non-conductive oxide being substantially not agglomerated, the content of said conductive polymer in the dry extract of said curable composition ranging from 0.1 to 10% by weight, preferably from 0.2 to 10% by weight and the content of the dry extract of said at least one epoxysilane in the dry extract of said curable composition ranging from 20 to 80% preferably 25 to 60% by weight based on the total weight of the dry extract.
Abstract:
Described is a curable composition that includes a salt comprising an alkali cation or rare earth metal ion and a counter ion which is the conjugate base of a superacid, a silicon containing binder, and an additive having a formula R1-O—[(CH2—CHR3)-O]n—R2, in which R1 and R2 represent H or an alkyl group, R3 is H or methyl, and n is an integer ranging from 2 to 200. Said composition is typically provided as a coating or hard coating. When cured, the composition provides good antistatic performance on its surface or to a surface on which it is applied. The composition when formed may also provide high optical transparency. The composition when formed exhibits low haze and good mechanical properties, such as good abrasion resistance, or good scratch resistance, or good mar resistance to its surface or to the surface on which it is applied.
Abstract:
Antistatic laminate film structures comprising a transparent support structure and an antistatic (AS) layer comprising at least one antistatic component are described herein. The antistatic laminate film structures may comprise a cellulose triacetate support structure, a polyvinyl alcohol polarizing element, and an enhancing or neutral layer.
Abstract:
Antistatic laminate film structures comprising a transparent support structure and an antistatic (AS) layer comprising at least one antistatic component are described herein. The antistatic laminate film structures may comprise a cellulose triacetate support structure, a polyvinyl alcohol polarizing element, and an enhancing or neutral layer.