Abstract:
A method for calculating an altitude of a target through an apparatus for calculating an altitude of the target, which comprises a plurality of MIMO radar virtual antennas, may comprise: receiving electromagnetic waves reflected from the target through a pair of virtual antennas classified into an upper antenna and a lower antenna and alternately arranged in two columns linearly; obtaining range information and phase information of the target from the pair of virtual antennas by analyzing the electromagnetic waves; and calculating altitude information of the target from position information of the pair of virtual antennas, and the range information and the phase information.
Abstract:
An operating method of a communication node in a network supporting licensed and unlicensed bands is disclosed. An operation method of a base station comprises the steps of: transmitting a PDSCH to a UE in an unlicensed band; receiving an HARQ response to the PDSCH from the UE; and determining a size of a CW on the basis of a proportion of NACKs in HARQ responses. Therefore, a performance of a communication network can be improved.
Abstract:
A method and an apparatus for transmitting and receiving a signal in a communication network are disclosed. A method for operating UE supporting an unlicensed band comprises the steps of: receiving from a base station DMTC-related information including DMTC cycle and DMTC offset; checking DMTC section to which DRS is transmitted based on the DMTC-related information; and receiving from the base station the DRS using sub-frames apart from a sub-frame corresponding to the DRS cycle within the DMTC section. As a result, the performance of a communication network can be improved.
Abstract:
When a feature of the present invention is summarized, disclosed is a frame structure of transmitted and received data in a wireless communication system, including: a plurality of uplink subframes (UL) or downlink subframes (DL) for transmitting and receiving data; and a coexistence synchronization signal preamble for frequency coexistence among asynchronous cells.
Abstract:
A cognitive radio mesh node may include at least one directional antenna, at least one transceiver to transmit and receive data using the at least one directional antenna, and a processor to determine a channel for performing communication for a cognitive radio mesh network based on a geolocation database and to control the at least one transceiver based on the determined channel.
Abstract:
A blood pressure measurement method using at least one radar in a blood pressure measurement apparatus may comprise: measuring a radar signal for at least one body part; extracting a heartbeat signal from the radar signal; selecting one or more peak signals from the heartbeat signal; calculating an area under a curve (AUC) of each of the selected one or more peak signals; and calculating blood pressure from the calculated AUC on the basis of a derived relational expression between AUC and blood pressure.
Abstract:
Disclosed are an apparatus and a method for securing an available frequency that secure a frequency in a communication area set so as not to overlap with a service protection area of a primary user as an available frequency to prevent interference with the primary user even in the case of communicating with a frequency sharing wireless apparatus without a positioning function.To this end, the apparatus for securing an available frequency includes: a storage unit storing positional information regarding a primary user protection area and information on a frequency for each communication area; a positioning unit measuring a current position; and a control unit calculating a spacing distance from the primary user protection area based on the current position measured by the positioning unit and securing a frequency which does not exceed the calculated spacing distance as an available frequency.
Abstract:
Disclosed is a method for managing network resources of a wireless terminal in a heterogeneous network environment and the method for managing network resources includes: searching for one or more networks which are accessible in the heterogeneous network environment; acquiring cycle information of the networks searched through the network searching; determining coexistence management cycles of the searched networks based on the cycle information; allocating one or more networks to be used in data transmission among the networks searched according to the coexistence management cycle and determining transmission management cycles of one or more allocated networks; and managing a resource of the searched network according to the coexistence management cycle and the transmission management cycle.
Abstract:
Provided is a hidden node detection method and apparatus in a wireless communication system, the apparatus including a sensing unit to sense a first communication device transmitting a data signal from among a plurality of communication devices sharing a wireless channel, a transmitter to generate a reception notification signal in response to the sensing, and transmit the reception notification signal to the a plurality of communication devices through a band identical to a transmission band of the data signal, and a controller to prevent a collision with the data signal transmitted from the first communication device through the wireless channel by delaying processing of a data transmission request when the data transmission request is input from a second communication device among the plurality of communication devices while maintaining the transmitting of the reception notification signal.
Abstract:
Provided herein is a method and apparatus for heterogeneous carrier aggregation, the method including calculating interferences regarding a plurality of interference paths between an adjacent cell and serving cell; determining weighted values for the plurality of interference paths in the serving cell; calculating an accumulated value (accumulated margin or accumulated interference) regarding the plurality of interference paths based on the weighted values in the serving cell; determining a component carrier to be used in the carrier aggregation based on the accumulated value calculated in the serving cell; and performing the carrier aggregation based on the component carrier determined.