Abstract:
A signal amplification apparatus includes a first modulator configured to receive an envelope signal, use a predetermined reference level to separate the received envelope signal into a first period and a second period, digitally modulate a signal of the second period to output the digitally modulated signal to a first output terminal, and output a signal of the first period to a second output terminal. Further, the signal amplification apparatus includes a second modulator configured to mix the digital modulated signal input through the first output terminal with a phase modulated carrier signal; an envelope modulator configured to output the signal of the first period as a power supply signal; and a power amplifier configured to amplify the mixed signal output by the second modulator to output the amplified signal.
Abstract:
A communication method and apparatuses performing the same. The communication method includes arranging first subcarriers of a first frequency domain and second subcarriers of a second frequency domain based on a mirror point and performing communication based on an orthogonal frequency-division multiplexing (OFDM) communication scheme using at least one of the first subcarriers and the second subcarriers.
Abstract:
Provided is a delta-sigma modulator including a summer summing an input signal and an analog signal, a first integrator integrating an output signal from the summer and outputting a first integration signal, a second integrator integrating the first integration signal and outputting a second integration signal, a comparator comparing the second integration signal and a reference signal and outputting a digital signal according to the comparison result, and a digital-to-analog converter converting the digital signal into an analog signal in response to a clock signal and outputting the converted analog signal, wherein the second integrator operates based on an Nth order (where N is natural number of 1 or greater) transfer function.
Abstract:
Provided is a method of correcting a time misalignment between envelope and phase components in a transmitting apparatus which separates envelope and phase components of a signal, processes them, and then recombines them to transmit the recombined signal. For this, in a method of correcting a time misalignment between envelope and phase components according to an embodiment of the present invention, a time misalignment is corrected by applying a time delay to at least one of envelope and phase components in digital and analog signal processing operations, or applying a time delay to an envelope or phase component by a pre-processing operation.
Abstract:
Provided is a signal transmission device including a first modulation unit generating a first modulated signal having at least three logic levels by modulating an input signal; a characteristic adjustment unit generating an adjusted first modulated signal by adjusting the at least one of electrical characteristic values based on an adjustment signal; a second modulation unit generating a second modulated signal by modulating the adjusted first modulated signal; and an adjustment operation unit generating the adjustment signal based on electrical characteristic values respectively corresponding to the at least three logic levels of the first modulated signal and corresponding to at least three logic levels of the second modulated signal. Linearity of the modulated signal generated by the provided signal transmission device is enhanced.