Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
A power converter may include a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, an output for producing the output voltage, wherein a first switch is coupled to a first output terminal of the output and a second switch is coupled to a second output terminal of the output, and a linear amplifier coupled to the output. The controller may be configured to, in a linear amplifier mode of the power stage, enable the linear amplifier to transfer electrical energy from an input source of the power stage to the load, and in at least one mode of the power stage other than the linear amplifier mode, sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer the electrical energy from the input source to the load.
Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
In accordance with embodiments of the present disclosure, a system may include an impedance estimator configured to estimate an impedance of a load and generate a target current based at least on an input voltage and the impedance, a voltage feedback loop responsive to a difference between the input voltage and an output voltage of the load, and a current controller configured to, responsive to the voltage feedback loop, the impedance estimator, and the input voltage, generate an output current to the load.A controller may be configured to sequentially apply switch configurations to a power converter to selectively activate or deactivate each of a plurality of switches of the power converter in accordance with a selected operational mode of the power converter, wherein the plurality of operational modes may include a single-ended buck mode for switching a polarity of the output voltage in which: during a charging phase, at least one of the plurality of switches is activated such that a power inductor is coupled between a first terminal of a power source and a particular one of the first output terminal and the second output terminal; and during a transfer phase, at least one of the plurality of switches is activated such that the power inductor is coupled between a second terminal of the power source and the particular one of the first output terminal and the second output terminal.A controller may be configured to sequentially apply a plurality of switch configurations of a power converter in order to operate the power converter as a differential output converter to switch a polarity of the output voltage, such that: during a charging phase of the power converter, a power inductor is coupled between one of a first terminal and a second terminal of the power source and one of a first terminal and a second terminal of the output load, during a transfer phase of the power converter, at least one of the plurality of switches is activated in order to couple the power inductor between the second terminal of the power source and one of the first terminal of the output load and the second terminal of the output load, wherein the output voltage comprises a differential voltage between the first terminal and the second terminal.A power converter may include a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, an output for producing the output voltage, wherein a first switch is coupled to a first output terminal of the output and a second switch is coupled to a second output terminal of the output, and a linear amplifier coupled to the output. The controller may be configured to, in a linear amplifier mode of the power stage, enable the linear amplifier to transfer electrical energy from an input source of the power stage to the load, and in at least one mode of the power stage other than the linear amplifier mode, sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer the electrical energy from the input source to the load.