Abstract:
In one embodiment, a first node in a network receives one or more bitmaps from one or more child nodes of the first node according to a directed acyclic graph (DAG). Each of the one or more child nodes is associated with a corresponding unique bit position in the one or more bitmaps. The first node stores, in a forwarding table, the one or more bitmaps received from the one or more child nodes of the first node. The first node receives a message that includes a destination bitmap that identifies one or more destinations of the message via one or more set bits at bit positions associated with the one or more child nodes. The first node forwards the message towards the identified one or more destinations based on the destination bitmap and the one or more bitmaps stored in the forwarding table of the first node.
Abstract:
In one embodiment, a local content hub device in a network receives content for distribution to a plurality of nodes in the network. The content is sent to the local content hub via a wide area network (WAN) using bit index explicit replication (BIER) messaging. The local content hub device caches the content and multicasts the cached content to the plurality of nodes in the network. The local content device determines that at least one of the plurality of nodes in the network did not receive the multicast content. The local content device retransmits the content to at least one of the plurality of nodes in the network that did not receive the multicast content.
Abstract:
In one embodiment, a device in a network sends a first multicast message to a plurality of destinations in the network. The first multicast message includes a first bitmap that identifies the destinations. The device receives one or more acknowledgements from a subset of the destinations. The device determines a retransmission bitmap that identifies those of the plurality of destinations that did not acknowledge the first multicast message, based on the received one or more acknowledgements. The device sends a retransmission multicast message to those of the plurality of destinations that did not acknowledge the first multicast message. The retransmission multicast message includes the retransmission bitmap.
Abstract:
In one embodiment, a device in a network sends a first multicast message to a plurality of destinations in the network. The first multicast message includes a first bitmap that identifies the destinations. The device receives one or more acknowledgements from a subset of the destinations. The device determines a retransmission bitmap that identifies those of the plurality of destinations that did not acknowledge the first multicast message, based on the received one or more acknowledgements. The device sends a retransmission multicast message to those of the plurality of destinations that did not acknowledge the first multicast message. The retransmission multicast message includes the retransmission bitmap.
Abstract:
An apparatus for facilitating reception of multiple representations of a video signal. In one embodiment, the apparatus includes a mechanism for receiving plural representations of the video signal corresponding to plural decimated versions of the video signal, associating pictures of the received plural representations of the video signal, and outputting pictures corresponding to information from associated pictures in accordance with a relative temporal order.
Abstract:
In one embodiment, a method includes transmitting media from a source to a plurality of receivers in a first source-specific multicast (SSM) channel and transmitting from the source to said plurality of receivers, a channel change message in an in-band transport control protocol message identifying a second SSM channel, wherein the receivers are configured to join said second SSM channel in response to said channel change message.
Abstract:
In one embodiment, a method includes transmitting media from a source to a plurality of receivers in a first source-specific multicast (SSM) channel and transmitting from the source to said plurality of receivers, a channel change message in an in-band transport control protocol message identifying a second SSM channel, wherein the receivers are configured to join said second SSM channel in response to said channel change message.
Abstract:
In one embodiment, a device in a network sends a first multicast message to a plurality of destinations in the network. The first multicast message includes a first bitmap that identifies the destinations. The device receives one or more acknowledgements from a subset of the destinations. The device determines a retransmission bitmap that identifies those of the plurality of destinations that did not acknowledge the first multicast message, based on the received one or more acknowledgements. The device sends a retransmission multicast message to those of the plurality of destinations that did not acknowledge the first multicast message. The retransmission multicast message includes the retransmission bitmap.
Abstract:
In one embodiment, a device in a network sends a first multicast message to a plurality of destinations in the network. The first multicast message includes a first bitmap that identifies the destinations. The device receives one or more acknowledgements from a subset of the destinations. The device determines a retransmission bitmap that identifies those of the plurality of destinations that did not acknowledge the first multicast message, based on the received one or more acknowledgements. The device sends a retransmission multicast message to those of the plurality of destinations that did not acknowledge the first multicast message. The retransmission multicast message includes the retransmission bitmap.
Abstract:
In one embodiment, a method that includes receiving plural representations of a video signal, the video signal comprising plural sequenced pictures corresponding to at least a portion of a video program, wherein two or more of the plural representations of the video signal (PROTVS) includes a respective sequence of latticed pictures and one or more of the other PROTVS includes a respective sequence of non-latticed pictures; and providing in plural successive non-overlapping segments distribution interval (SDIs) compressed versions of the PROTVS in a single video stream, wherein each SDI consists of plural non-overlapping, consecutive segments, each of the plural non-overlapping consecutive segments originating from a respective one of the collective PROTVS.