Abstract:
Novel methods and systems for miniaturized lasers are described. A photonic crystal is bonded to a silicon-on-insulator wafer. The photonic crystal includes air-holes and can include a waveguide which couples the laser output to a silicon waveguide.
Abstract:
Novel methods and systems for miniaturized lasers are described. A photonic crystal is bonded to a silicon-on-insulator wafer. The photonic crystal includes air-holes and can include a waveguide which couples the laser output to a silicon waveguide.
Abstract:
A silicon photonic crystal nanobeam cavity device is described, including a heater that can set a desired temperature on the cavity device in order to control its resonant wavelength. The device has no cladding, which is advantageous for sensing. Biosensing applications with temperature control can be carried out with the nanobeam cavity device.
Abstract:
Methods and devices for a tunable photonic crystal nanobeam cavity are disclosed. Such nanobeam cavity has high Q-factor and can be integrated with a microheater. The resonant wavelength of the cavity can be tuned to attain a high modulation depth with low power consumption.