摘要:
A semiconductor process and apparatus provide a high-performance magnetic field sensor with three differential sensor configurations which require only two distinct pinning axes, where each differential sensor is formed from a Wheatstone bridge structure with four unshielded magnetic tunnel junction sensor arrays, each of which includes a magnetic field pulse generator for selectively applying a field pulse to stabilize or restore the easy axis magnetization of the sense layers to orient the magnetization in the correct configuration prior to measurements of small magnetic fields. The field pulse is sequentially applied to groups of the sense layers of the Wheatstone bridge structures, thereby allowing for a higher current pulse or larger sensor array size for maximal signal to noise ratio.
摘要:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
摘要:
A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.
摘要:
A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.
摘要:
An out-of-plane tunneling magnetoresistive (TMR) magnetic field sensor includes a sense element that defines a sense plane and a flux guide configured to direct a magnetic field perpendicular to the sense plane into the sense plane. The magnetic field sensor further includes a first coil arranged in a first plane, a second coil electrically insulated from the first coil and arranged in a spaced-apart second plane, and drive circuitry operatively connected to the first coil and the second coil. The drive circuitry in a first mode energizes the first and second coils to generate respective first and second fields that combine to set a magnetization of the flux guide. The drive circuitry in a second mode energizes only the first coil to generate the first field so as to set a magnetization of the sense element without changing the magnetization of the flux guide.
摘要:
A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.
摘要:
A method of sensing a magnetic field including at least one magnetoresistive sensing element (100) in a circuit (101) includes supplying (702) a first plurality of currents to a stabilization line (116) disposed adjacent the magnetoresistive sensing element (100), applying (704) a second plurality of currents to a self test line (120) disposed adjacent the magnetic tunnel junction (100), one each of the first plurality of currents being supplied during one each of the second plurality of currents. Values sensed by the magnetic tunnel junction sensing element (100) in response to the supplying (702) of the first plurality of currents and the applying (704) of the second plurality of currents are sampled (706) and the sensitivity of the magnetic tunnel junction sensor (100) and electrical and magnetic offset are determined (708) from the sampled values. The temperature coefficient of offset may also be determined.
摘要:
A structure and method are provided for self-test of a Z axis sensor. Two self-test current lines are symmetrically positioned adjacent, but equidistant from, each sense element. The vertical component of the magnetic field created from a current in the self-test lines is additive in a flux guide positioned adjacent, and orthogonal to, the sense element; however, the components of the magnetic fields in the plane of the sense element created by each of the two self-test current line pairs cancel one another at the sense element center, resulting in only the Z axis magnetic field being sensed during the self-test.
摘要:
A probe card and method are provided for testing magnetic sensors at the wafer level. The probe card has one or more probe tips having a first pair of solenoid coils in parallel configuration on first opposed sides of each probe tip to supply a magnetic field in a first (X) direction, a second pair of solenoid coils in parallel configuration on second opposed sides of each probe tip to supply a magnetic field in a second (Y) direction orthogonal to the first direction, and an optional third solenoid coil enclosing or inscribing the first and second pair to supply a magnetic field in a third direction (Z) orthogonal to both the first and second directions. The first pair, second pair, and third coil are each symmetrical with a point on the probe tip array, the point being aligned with and positioned close to a magnetic sensor during test.
摘要:
A method and apparatus eliminate magnetic domain walls in a flux guide by applying, either simultaneously or sequentially, a current pulse along serially positioned reset lines to create a magnetic field along the flux guide, thereby removing the magnetic domain walls. By applying the current pulses in parallel and stepping through pairs of shorter reset lines segments via switches, less voltage is required.