Abstract:
Serializer-Deserializer (SerDes) operation is optimized for signals based on signal error statistics. Forward Error Correction (FEC) may provide feedback of error statistics or error correction statistics to a SerDes tuner, which uses the statistics to selectively tune or adjust SerDes operating parameters, such as vertical and horizontal sampling or slicing offsets, gain and equalization, to decrease the bit error rate (BER). Statistics report which bits and patterns are corrected and to what values. Knowledge of expected and actual signals is leveraged to correlate detected errors with underlying problems and solutions to optimize SerDes operation. Each node in a network, such as a Ethernet Passive Optical Network (EPON), is enabled to fine tune its operation independently for each logical or physical channel.
Abstract:
Serializer-Deserializer (SerDes) operation is optimized for signals based on signal error statistics. Forward Error Correction (FEC) may provide feedback of error statistics or error correction statistics to a SerDes tuner, which uses the statistics to selectively tune or adjust SerDes operating parameters, such as vertical and horizontal sampling or slicing offsets, gain and equalization, to decrease the bit error rate (BER). Statistics report which bits and patterns are corrected and to what values. Knowledge of expected and actual signals is leveraged to correlate detected errors with underlying problems and solutions to optimize SerDes operation. Each node in a network, such as a Ethernet Passive Optical Network (EPON), is enabled to fine tune its operation independently for each logical or physical channel.
Abstract:
The present disclosure is directed to a network processor for processing high volumes of traffic provided by todays access networks at (or near) wireline speeds. The network process can be implemented within a residential gateway to perform, among other functions, routing to deliver high speed data services (e.g., data services with rates up to 10 Gbit/s) from a wide area network (WAN) to end user devices in a local area network (LAN).
Abstract:
A data rate control system for an optical line terminal (OLT) may include a processor, an OLT Medium Access Control (MAC) device that includes passive optical network (PON) ports that are mapped to identifiers, and a switch device coupled to the OLT MAC device. The OLT MAC device may determine that a PON port is congested, and may transmit a message to the switch device indicates the congestion at the PON port based on the mapped identifier. The switch device may transmit data items to the OLT MAC device for transmission over the PON ports at data rates respective to the PON ports, may receive the message, and may reduce the rate at which the data items are being transmitted to the OLT MAC device for transmission over the congested PON port without changing the rates at which other data items are being transmitted to the OLT MAC device.
Abstract:
A method and system for channelizing a Passive Optical Network (PON) Media Access Controller (MAC) includes increasing a clock rate of each of one or more PON MAC(s) to create communication lanes each comprising a plurality of N channels. The PONs are channelized according to NX, where N equals a number of ports supported by the MAC and X equals a designated operating PON MAC clocking rate allowing for leveraging of existing Passive Optical Network (PON) infrastructures to provide a more power efficient and physically smaller MAC layer for OLTs.
Abstract:
A system and method for Service Interoperability in Ethernet Passive Optical Network (SIEPON) energy saving statistics. Energy saving statistics can be collected from a plurality of subordinate nodes in a point-to-multipoint network through a mechanism that aggregates energy saving statistics as those energy saving statistics are reported upstream. Such aggregation of energy saving statistics can be advantageous in that the aggregated energy saving information can appear uncorrelated to individual subordinate nodes. Privacy concerns are thereby addressed.
Abstract:
A data rate control system for an optical line terminal (OLT) may include a processor, an OLT Medium Access Control (MAC) device that includes passive optical network (PON) ports that are mapped to identifiers, and a switch device coupled to the OLT MAC device. The OLT MAC device may determine that a PON port is congested, and may transmit a message to the switch device indicates the congestion at the PON port based on the mapped identifier. The switch device may transmit data items to the OLT MAC device for transmission over the PON ports at data rates respective to the PON ports, may receive the message, and may reduce the rate at which the data items are being transmitted to the OLT MAC device for transmission over the congested PON port without changing the rates at which other data items are being transmitted to the OLT MAC device.
Abstract:
A dynamic readjustment of an energy efficient network control policy parameters in an optical network unit based on a Service Interoperability in Ethernet Passive Optical Network (SIEPON) protocol. The access link between the OLT and ONU has distinct properties that can be used to enhance the energy efficiency control policy on the network facing side of the ONU. In one embodiment, an adjustment mechanism can be based on the receipt, by an optical interface in an ONU, of a control command from an upstream OLT, wherein the control command is configured to provide a limitation on an available time period during which the ONU can communicate with the OLT over an optical fiber cable.
Abstract:
A dynamic readjustment of an energy efficient network control policy parameters in an optical network unit based on a Service Interoperability in Ethernet Passive Optical Network (SIEPON) protocol. The access link between the OLT and ONU has distinct properties that can be used to enhance the energy efficiency control policy on the network facing side of the ONU. In one embodiment, an adjustment mechanism can be based on the receipt, by an optical interface in an ONU, of a control command from an upstream OLT, wherein the control command is configured to provide a limitation on an available time period during which the ONU can communicate with the OLT over an optical fiber cable.
Abstract:
A service provisioning enabled management in Service Interoperability in Ethernet Passive Optical Network (SIEPON) switching subsystem. The delivery of network services to each of a plurality of subscribers coupled to an optical network unit (ONU) can be defined individually by the service provider. The service-specific functions within the ONU can be configured based on knowledge of the levels of provisioning of network services.