Abstract:
A media gateway that services a plurality of client devices may be used to combine a plurality of encoded multimedia transport streams, which may comprise a buffered copy of received encoded broadcast multimedia transport stream and an encoded local multimedia transport stream that pertains to the broadcast transport stream. The media gateway may decode the encoded broadcast multimedia transport stream to extract broadcast multimedia content carried therein based on determination of capabilities of one or more client devices used in playback of the content. The encoded local multimedia transport stream may be generated based on local multimedia content generated and/or captured via one or more client devices. The buffering duration of the received encoded broadcast multimedia transport stream may be adaptively determined, to ensure that the encoded local multimedia transport stream and the encoded broadcast multimedia transport stream are synchronized when they are combined.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures may utilize orbital angular momentum to deliver more bandwidth across multiple channels than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in a bonded channel group.
Abstract:
An IP multimedia gateway (IMG) receives content sharing service profiles generated by a service manager for communication devices that are coupled to the IMG. Content and/or content information that is received for communication to a first device, is communicated to other devices in response to a request. Content sharing profiles comprise permissions, group members, user preferences, device capabilities and security profiles. Content streams communicated to the first device may be shared with a second device based on the profiles. The second device may share additional streams with the first device. The first device or other devices may communicate the request. The content may be received from a service manager network device. The IMG and a communication device that may display the content may be integrated in a set-top-box or digital TV. Login access is enabled to devices for requesting content. Cooperation with other IMGs may enable discovery and/or content communication.
Abstract:
In an IP multimedia gateway, locations corresponding to communicatively coupled communication devices are determined and transmitted to a service provider device (SPD) that provides services to the communication devices. Communication devices receive location based service profiles from the (SPD) based on the determined locations. Services content from the (SPD) is communicated with the communication devices and/or with the (SPD), based on the profiles. The determined locations are received from communication devices which may be local or remote. A device location map is generated to be displayed by communication devices. The gateway may be integrated in an STB/DTV that displays the determined locations. Content is communicated to communication devices based on their location. The (SPD) may provide content and/or control information for communication device services. Locations are associated with client devices for detecting cloned client devices where determined locations are different than associated locations and/or for restricting services based on location.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures may utilize orbital angular momentum to deliver more bandwidth across multiple channels than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in a bonded channel group.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in the bonded channel group.
Abstract:
An IP multimedia gateway (IMG) receives content sharing service profiles generated by a service manager for communication devices that are coupled to the IMG. Content and/or content information that is received for communication to a first device, is communicated to other devices in response to a request. Content sharing profiles comprise permissions, group members, user preferences, device capabilities and security profiles. Content streams communicated to the first device may be shared with a second device based on the profiles. The second device may share additional streams with the first device. The first device or other devices may communicate the request. The content may be received from a service manager network device. The IMG and a communication device that may display the content may be integrated in a set-top-box or digital TV. Login access is enabled to devices for requesting content. Cooperation with other IMGs may enable discovery and/or content communication.
Abstract:
A participation device in a multiparty conference call may act as a server device and/or a client device for two-way audio and video (AV) streaming. A server device may encode a requested AV stream into a set of different encoding profiles that may be dynamically determined based on the varying channel conditions and device capacities of the client devices. At least a portion of differently encoded AV streams is selected and dynamically communicated to the client devices for display. Session parameters are determined according to the varying channel conditions and the device capacities of the client devices to create intended sessions. The selected encoded AV streams are communicated utilizing segment-based adaptive streaming techniques such as HTTP. A client device may access to a HTTP session to download an expected AV stream from the server device. The downloaded AV stream may be decoded into different decoding profiles for display as needed.
Abstract:
A media gateway that services a plurality of client devices may be used to combine a plurality of encoded multimedia transport streams, which may comprise a buffered copy of received encoded broadcast multimedia transport stream and an encoded local multimedia transport stream that pertains to the broadcast transport stream. The media gateway may decode the encoded broadcast multimedia transport stream to extract broadcast multimedia content carried therein based on determination of capabilities of one or more client devices used in playback of the content. The encoded local multimedia transport stream may be generated based on local multimedia content generated and/or captured via one or more client devices. The buffering duration of the received encoded broadcast multimedia transport stream may be adaptively determined, to ensure that the encoded local multimedia transport stream and the encoded broadcast multimedia transport stream are synchronized when they are combined.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures may utilize orbital angular momentum to deliver more bandwidth across multiple channels than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in a bonded channel group.