Abstract:
A system and method for efficiently processing memory requests are described. A computing system includes multiple compute units, multiple caches of a memory hierarchy and a communication fabric. A compute unit generates a memory access request that misses in a higher level cache, which sends a miss request to a lower level shared cache. During servicing of the miss request, the lower level cache merges identification information of multiple memory access requests targeting a same cache line from multiple compute units into a merged memory access response. The lower level shared cache continues to insert information into the merged memory access response until the lower level shared cache is ready to issue the merged memory access response. An intermediate router in the communication fabric broadcasts the merged memory access response into multiple memory access responses to send to corresponding compute units.
Abstract:
A processor modifies memory management mode for a range of memory locations of a multilevel memory hierarchy based on changes in an application phase of an application executing at a processor. The processor monitors the application phase (e.g.,. computation-bound phase, input/output phase, or memory access phase) of the executing application and in response to a change in phase consults a management policy to identify a memory management mode. The processor automatically reconfigures a memory controller and other modules so that a range of memory locations of the multilevel memory hierarchy are managed according to the identified memory management mode. By changing the memory management mode for the range of memory locations according to the application phase, the processor improves processing efficiency and flexibility.
Abstract:
Systems and methods are disclosed that map quantum circuits to physical qubits of a quantum computer. Techniques are disclosed to generate a graph that characterizes the physical qubits of the quantum computer and to compute the resource requirements of each circuit of the quantum circuits. For each circuit, the graph is searched for a subgraph that matches the resource requirements of the circuit, based on a density matrix. Physical qubits, defined by the matching subgraph, are then allocated to the logical qubits of the circuit.
Abstract:
Systems and methods are disclosed that map quantum circuits to physical qubits of a quantum computer. Techniques are disclosed to generate a graph that characterizes the physical qubits of the quantum computer and to compute the resource requirements of each circuit of the quantum circuits. For each circuit, the graph is searched for a subgraph that matches the resource requirements of the circuit, based on a density matrix. Physical qubits, defined by the matching subgraph, are then allocated to the logical qubits of the circuit.
Abstract:
A processor modifies memory management mode for a range of memory locations of a multilevel memory hierarchy based on changes in an application phase of an application executing at a processor. The processor monitors the application phase (e.g., computation-bound phase, input/output phase, or memory access phase) of the executing application and in response to a change in phase consults a management policy to identify a memory management mode. The processor automatically reconfigures a memory controller and other modules so that a range of memory locations of the multilevel memory hierarchy are managed according to the identified memory management mode. By changing the memory management mode for the range of memory locations according to the application phase, the processor improves processing efficiency and flexibility.