Abstract:
A process for cleaning a silicon surface. First, a silicon surface is cleaned with an oxidant solution. Next, the silicon surface is rinsed with HF vapor or liquid and then with the silicon surface with hydrogen water or deionized water under megasonic agitation. Finally, the silicon surface is cleaned with an oxidant solution a second time. The present inventive cleaning process can be applied in thin film transistor (TFT) fabrication and the TFT obtained has higher electron mobility.
Abstract:
A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
Abstract:
A process for forming a polysilicon layer. First, an amorphous silicon layer is formed. Next, the amorphous silicon layer is pre-treated such that a surface of the amorphous silicon layer is oxidized to a silicon oxide layer or nitridized to a silicon nitride layer. Next, the amorphous silicon layer is crystallized to form a polysilicon layer. TFT fabricated by the present invention has smaller Vt and higher electron mobility.