Abstract:
An integrated circuit may include multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances.
Abstract:
Systems, apparatuses, and methods for reaching power targets across different clock domains are described. In various embodiments, a first processor complex and a second processor complex operate while powered by a same, single power plane, but with respective clock domains. When a request is detected to change an operating mode of a particular core from one of the processor complexes to an operating mode which does not provide the worst-case power supply load on the single power plane, an amount of voltage margin to recover from the operational voltage is determined based on the second operating mode prior to granting the request and based on each other core in the complexes operating in respective current operating modes. An operational voltage less the determined voltage margin to recover is assigned to the processor complexes while different clock frequencies are assigned to the processor complexes.
Abstract:
Techniques are disclosed relating to completion of load and store instructions in a weakly-ordered memory model. In one embodiment, a processor includes a load queue and a store queue and is configured to associate queue information with a load instruction in an instruction stream. In this embodiment, the queue information indicates a location of the load instruction in the load queue and one or more locations in the store queue that are associated with one or more store instructions that are older than the load instruction. The processor may determine, using the queue information, that the load instruction does not conflict with a store instruction in the store queue that is older than the load instruction. The processor may remove the load instruction from the load queue while the store instruction remains in the store queue. The queue information may include a wrap value for the load queue.
Abstract:
In an embodiment, a processor includes a multi-level dispatch circuit configured to supply operations for execution by multiple parallel execution pipelines. The multi-level dispatch circuit may include multiple dispatch buffers, each of which is coupled to multiple reservation stations. Each reservation station may be coupled to a respective execution pipeline and may be configured to schedule instruction operations (ops) for execution in the respective execution pipeline. The sets of reservation stations coupled to each dispatch buffer may be non-overlapping. Thus, if a given op is to be executed in a given execution pipeline, the op may be sent to the dispatch buffer which is coupled to the reservation station that provides ops to the given execution pipeline.
Abstract:
An integrated circuit may include multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g., to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
An integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, a processor includes a multi-level dispatch circuit configured to supply operations for execution by multiple parallel execution pipelines. The multi-level dispatch circuit may include multiple dispatch buffers, each of which is coupled to multiple reservation stations. Each reservation station may be coupled to a respective execution pipeline and may be configured to schedule instruction operations (ops) for execution in the respective execution pipeline. The sets of reservation stations coupled to each dispatch buffer may be non-overlapping. Thus, if a given op is to be executed in a given execution pipeline, the op may be sent to the dispatch buffer which is coupled to the reservation station that provides ops to the given execution pipeline.
Abstract:
A system include multiple components configured to operate in different modes with different power supply loads. Control circuitry may determine a first voltage margin to be included in a power supply voltage magnitude requested for the components based on current operating modes of the multiple components and detect that a first component of the multiple components has changed its operating mode. In response to the detection, the control circuitry may modify at least one parameter of the following parameters to recover a portion of the first voltage margin: a power supply voltage magnitude and an operating frequency of at least a portion of the system. A magnitude of the modification may be based on an estimated difference between a first amount of dynamic power supply voltage loss before the change in operating mode and a second amount of dynamic power supply voltage loss after the change in operating mode.
Abstract:
Systems, apparatuses, and methods for retaining architected state for relatively frequent switching between sleep and active operating states are described. A processor receives an indication to transition from an active state to a sleep state. The processor stores a copy of a first subset of the architected state information in on-die storage elements capable of retaining storage after power is turned off. The processor supports programmable input/output (PIO) access of particular stored information during the sleep state. When a wakeup event is detected, circuitry within the processor is powered up again. A boot sequence and recovery of architected state from off-chip memory are not performed. Rather than fetch from a memory location pointed to by a reset base address register, the processor instead fetches an instruction from a memory location pointed to by a restored program counter of the retained subset of the architected state information.