基于Slim-YOLOv3的口罩佩戴情况检测方法

    公开(公告)号:CN112949572B

    公开(公告)日:2022-11-25

    申请号:CN202110330611.2

    申请日:2021-03-26

    Abstract: 本发明属于深度学习目标检测和计算机视觉技术领域,具体涉及一种基于Slim‑YOLOv3的口罩佩戴情况检测方法,该方法包括:实时获取人脸视频数据,对人脸视频数据进行预处理;将预处理后的人脸图像输入到训练好的Slim‑YOLOv3模型中,判断该用户是否正确佩戴口罩;本发明通过一种基于Slim‑YOLOv3的口罩佩戴情况视频检测方法,加上采用改进的无监督自分类方法对不规范佩戴口罩的数据进行子类划分,使得口罩佩戴视频检测任务可以更加精确快速的实现。且提出的网络更加简洁,使得应用成本进一步降低。

    一种联合多目标跟踪和行人角度识别的分类方法

    公开(公告)号:CN113435319B

    公开(公告)日:2022-05-10

    申请号:CN202110713283.4

    申请日:2021-06-25

    Abstract: 本发明属于多目标跟踪与行人角度识别领域,具体涉及一种联合多目标跟踪和行人角度识别的分类方法,该方法包括:将待检测的图像进行增强处理;将增强后的图像输入到训练好的分类模型中进行行人跟踪和角度的识别分类,根据分类结果对待检测图像进行标记;分类模型为改进的JDE多目标跟踪模型和行人角度识别模型;本发明通过特征共享的方式实现了多目标跟踪算法与行人角度识别的算法的结合,减小了模型参数数量,减小了计算量。本发明既能够对视频中出现的所有大目标以及中等目标进行跟踪,又能够对视频中出现的所有大目标以及中等目标的角度进行角度识别,同时该算法能够满足实时性要求。

    一种联合多目标跟踪和行人角度识别的分类方法

    公开(公告)号:CN113435319A

    公开(公告)日:2021-09-24

    申请号:CN202110713283.4

    申请日:2021-06-25

    Abstract: 本发明属于多目标跟踪与行人角度识别领域,具体涉及一种联合多目标跟踪和行人角度识别的分类方法,该方法包括:将待检测的图像进行增强处理;将增强后的图像输入到训练好的分类模型中进行行人跟踪和角度的识别分类,根据分类结果对待检测图像进行标记;分类模型为改进的JDE多目标跟踪模型和行人角度识别模型;本发明通过特征共享的方式实现了多目标跟踪算法与行人角度识别的算法的结合,减小了模型参数数量,减小了计算量。本发明既能够对视频中出现的所有大目标以及中等目标进行跟踪,又能够对视频中出现的所有大目标以及中等目标的角度进行角度识别,同时该算法能够满足实时性要求。

    基于Slim-YOLOv3的口罩佩戴情况检测方法

    公开(公告)号:CN112949572A

    公开(公告)日:2021-06-11

    申请号:CN202110330611.2

    申请日:2021-03-26

    Abstract: 本发明属于深度学习目标检测和计算机视觉技术领域,具体涉及一种基于Slim‑YOLOv3的口罩佩戴情况检测方法,该方法包括:实时获取人脸视频数据,对人脸视频数据进行预处理;将预处理后的人脸图像输入到训练好的Slim‑YOLOv3模型中,判断该用户是否正确佩戴口罩;本发明通过一种基于Slim‑YOLOv3的口罩佩戴情况视频检测方法,加上采用改进的无监督自分类方法对不规范佩戴口罩的数据进行子类划分,使得口罩佩戴视频检测任务可以更加精确快速的实现。且提出的网络更加简洁,使得应用成本进一步降低。

Patent Agency Ranking