-
公开(公告)号:CN110744163A
公开(公告)日:2020-02-04
申请号:CN201911093810.5
申请日:2019-11-11
Applicant: 重庆理工大学
Abstract: 本发明公开了一种微电子制造中抗热迁移的微焊点结构,包括热端金属基底和冷端金属基底,所述热端金属基底的焊接面上设有Co-P纳米晶薄膜,该Co-P纳米晶薄膜中P的原子百分比为0.1~10at.%,所述冷端金属基底的焊接面上设有Ag纳米晶薄膜;所述热端金属基底和冷端金属基底通过锡基钎料连接,所述锡基钎料与Co-P纳米晶薄膜和Ag纳米晶薄膜的连接处分别形成第一金属间化合物和第二金属间化合物。其在极端温度梯度条件下具有良好的抗热迁移性能和高可靠性,使用寿命长。还公开了一种微电子制造中抗热迁移微焊点的制备方法,工艺流程简单,工序少,成本低廉。
-
公开(公告)号:CN110682021B
公开(公告)日:2021-08-03
申请号:CN201911093840.6
申请日:2019-11-11
Applicant: 重庆理工大学
Abstract: 本发明公开了一种抑制界面IMC生长的微焊点的制备方法,其包括如下步骤:步骤一,沉积薄膜,提供两块金属基底,在所述金属基底的焊接面上沉积有Co‑P纳米晶薄膜,该Co‑P纳米晶薄膜中P的原子百分比为0.1~10at.%;步骤二,钎焊,将两块金属基底的焊接面对准,以纯Sn作为钎料,利用浸焊在两块金属基底的焊接面之间制得Co‑P/Sn/Ag微互连结构;步骤三,超声刻蚀处理,对制得的Co‑P/Sn/Co‑P微互连结构进行超声刻蚀处理,除去未反应的纯Sn钎料,在金属基底上得到Co‑P/CoSn3结构;步骤四,回流焊,将刻蚀后的Co‑P/CoSn3结构用SnAg锡膏连接,并进行回流焊,得到具有Co‑P/SnAg/Co‑P微互连结构的微焊点。其能够有效抑制使用过程中温度梯度造成的原子迁移,同时能够抑制界面IMC在热迁移下的继续生长,提高微焊点的可靠性。
-
公开(公告)号:CN110530926A
公开(公告)日:2019-12-03
申请号:CN201910929814.6
申请日:2019-09-29
Applicant: 重庆理工大学
Abstract: 本发明公开了一种电子封装微焊点在高温条件下的热迁移实验装置,包括底座,所述底座上设有横向滑轨,两个横向滑块滑动配合连接于横向滑轨上,一个横向滑块上固定有加热机构,另一个横向滑块上固定有冷却机构,所述加热机构的加热面和冷却机构的冷却面竖向布置;所述加热面和冷却面上可拆卸连接有用于横向放置试样的样品台,试样两端分别与加热机构的加热面和冷却机构的冷却面接触。其结构简单,能够适用于较高温度的热迁移实验,有效避免除温度梯度外其他因素对实验结果的影响,能够在钎料熔化的同时发生热迁移,使金属原子通过液态钎料发生迁移,可以极大地减小热迁移阻力,极大地提高热迁移效率。
-
公开(公告)号:CN110744163B
公开(公告)日:2022-04-19
申请号:CN201911093810.5
申请日:2019-11-11
Applicant: 重庆理工大学
Abstract: 本发明公开了一种微电子制造中抗热迁移的微焊点结构,包括热端金属基底和冷端金属基底,所述热端金属基底的焊接面上设有Co‑P纳米晶薄膜,该Co‑P纳米晶薄膜中P的原子百分比为0.1~10at.%,所述冷端金属基底的焊接面上设有Ag纳米晶薄膜;所述热端金属基底和冷端金属基底通过锡基钎料连接,所述锡基钎料与Co‑P纳米晶薄膜和Ag纳米晶薄膜的连接处分别形成第一金属间化合物和第二金属间化合物。其在极端温度梯度条件下具有良好的抗热迁移性能和高可靠性,使用寿命长。还公开了一种微电子制造中抗热迁移微焊点的制备方法,工艺流程简单,工序少,成本低廉。
-
公开(公告)号:CN110560815B
公开(公告)日:2021-10-08
申请号:CN201910929813.1
申请日:2019-09-29
Applicant: 重庆理工大学
Abstract: 本发明公开了一种具有[100]择尤取向的全IMC微焊点的制备方法,其包括如下步骤:步骤一,电镀,提供两块金属基底,所述金属基底的焊接面上沉积有厚度为20±2μm的Co‑P纳米晶薄膜,该Co‑P纳米晶薄膜中P的原子百分比为0.1~10at.%。步骤二,钎焊,将两块金属基底的焊接面对准,以纯Sn作为钎料,利用浸焊或回流焊在两块金属基底的焊接面之间制得Co‑P/Sn/Co‑P微互连结构。步骤三,时效处理,对制得的Co‑P/Sn/Co‑P微互连结构进行时效处理,时效温度为150~230℃,时效时间为20~200h,得到具有[100]择尤取向的全IMC微焊点其工艺流程简单,成本低廉,制得的微焊点是以[100]择尤取向的CoSn3晶粒为主体的全IMC结构,具有比Cu6Sn5全IMC结构韧性更优的力学性能。
-
公开(公告)号:CN110682021A
公开(公告)日:2020-01-14
申请号:CN201911093840.6
申请日:2019-11-11
Applicant: 重庆理工大学
Abstract: 本发明公开了一种抑制界面IMC生长的微焊点的制备方法,其包括如下步骤:步骤一,沉积薄膜,提供两块金属基底,在所述金属基底的焊接面上沉积有Co-P纳米晶薄膜,该Co-P纳米晶薄膜中P的原子百分比为0.1~10at.%;步骤二,钎焊,将两块金属基底的焊接面对准,以纯Sn作为钎料,利用浸焊在两块金属基底的焊接面之间制得Co-P/Sn/Ag微互连结构;步骤三,超声刻蚀处理,对制得的Co-P/Sn/Co-P微互连结构进行超声刻蚀处理,除去未反应的纯Sn钎料,在金属基底上得到Co-P/CoSn3结构;步骤四,回流焊,将刻蚀后的Co-P/CoSn3结构用SnAg锡膏连接,并进行回流焊,得到具有Co-P/SnAg/Co-P微互连结构的微焊点。其能够有效抑制使用过程中温度梯度造成的原子迁移,同时能够抑制界面IMC在热迁移下的继续生长,提高微焊点的可靠性。
-
公开(公告)号:CN110560815A
公开(公告)日:2019-12-13
申请号:CN201910929813.1
申请日:2019-09-29
Applicant: 重庆理工大学
Abstract: 本发明公开了一种具有[100]择尤取向的全IMC微焊点的制备方法,其包括如下步骤:步骤一,电镀,提供两块金属基底,所述金属基底的焊接面上沉积有厚度为20±2μm的Co-P纳米晶薄膜,该Co-P纳米晶薄膜中P的原子百分比为0.1~10at.%。步骤二,钎焊,将两块金属基底的焊接面对准,以纯Sn作为钎料,利用浸焊或回流焊在两块金属基底的焊接面之间制得Co-P/Sn/Co-P微互连结构。步骤三,时效处理,对制得的Co-P/Sn/Co-P微互连结构进行时效处理,时效温度为150~230℃,时效时间为20~200h,得到具有[100]择尤取向的全IMC微焊点其工艺流程简单,成本低廉,制得的微焊点是以[100]择尤取向的CoSn3晶粒为主体的全IMC结构,具有比Cu6Sn5全IMC结构韧性更优的力学性能。
-
-
-
-
-
-