-
公开(公告)号:CN118097362B
公开(公告)日:2024-07-05
申请号:CN202410512661.6
申请日:2024-04-26
Applicant: 西北工业大学
IPC: G06V10/80 , G06N3/0455 , G06N3/0464 , G06N3/084 , G06T5/50 , G06V10/26 , G06V10/44 , G06V10/52 , G06V10/82 , G06T5/60
Abstract: 为了解决现有的图像融合方法融合结果对下游任务如目标检测等无法起到促进作用,以及融合效果不佳的技术问题,本发明提出一种基于语义感知学习的多模态图像融合方法,用于融合长波红外、中波红外和短波红外图像从而生成高质量融合图像。本发明先构建并训练语义分割网络,再构建嵌套密集连接的融合网络并利用训练好的语义分割网络指导该融合网络训练,最终训练好的融合网络能够对图像中不同区域采用不同的融合策略实现对图像融合过程的细粒度控制,突出目标的纹理细节和像素强度信息,使得融合结果更加符合图像中不同区域的语义信息,提高了融合结果的信息熵等融合质量评价指标,对下游任务如目标检测起到很好的促进作用。
-
公开(公告)号:CN119250161A
公开(公告)日:2025-01-03
申请号:CN202411778280.9
申请日:2024-12-05
Applicant: 西北工业大学
Abstract: 为解决当前追逃博弈智能决策中使用深度强化学习算法得到的神经网络可解释性和可调试性差,难以满足实际部署要求的问题,本发明提出一种基于模糊推理树的深度强化学习策略迁移方法。本发明以经过充分训练的待迁移网络为指导,通过智能优化算法对模糊推理树进行训练使其与训练好的待迁移网络在相同的输入下具有相同的输出,即使得模糊推理树学习到了状态到动作的映射关系,具有与深度强化学习的待迁移网络相同的决策能力,从而达到将深度强化学习算法中蕴含在神经网络内的规则抽取并迁移到模糊推理树的目的。本发明在不改变决策效能的前提下,提升了决策指令的生成速度,且解决了追逃博弈信息不完全可知、决策方法的可调试性和可解释性差的问题。
-
公开(公告)号:CN118097362A
公开(公告)日:2024-05-28
申请号:CN202410512661.6
申请日:2024-04-26
Applicant: 西北工业大学
IPC: G06V10/80 , G06N3/0455 , G06N3/0464 , G06N3/084 , G06T5/50 , G06V10/26 , G06V10/44 , G06V10/52 , G06V10/82 , G06T5/60
Abstract: 为了解决现有的图像融合方法融合结果对下游任务如目标检测等无法起到促进作用,以及融合效果不佳的技术问题,本发明提出一种基于语义感知学习的多模态图像融合方法,用于融合长波红外、中波红外和短波红外图像从而生成高质量融合图像。本发明先构建并训练语义分割网络,再构建嵌套密集连接的融合网络并利用训练好的语义分割网络指导该融合网络训练,最终训练好的融合网络能够对图像中不同区域采用不同的融合策略实现对图像融合过程的细粒度控制,突出目标的纹理细节和像素强度信息,使得融合结果更加符合图像中不同区域的语义信息,提高了融合结果的信息熵等融合质量评价指标,对下游任务如目标检测起到很好的促进作用。
-
-