-
公开(公告)号:CN116644874B
公开(公告)日:2024-11-01
申请号:CN202310442560.1
申请日:2023-04-23
申请人: 苏州大学
IPC分类号: G06Q10/047 , G06Q10/083 , G06F18/243 , G06N3/126
摘要: 本发明涉及物流配送技术领域,具体涉及一种多配送中心电动汽车路径规划方法。本发明对于具有多配送中心,多个客户点以及多辆电动汽车进行配送的问题进行了建模,利用以机器学习模型为评估模块的遗传算法对于上述问题进行了求解,同时在遗传算法中根据机器学习模型的评估来判断遗传算法中染色体的关键基因,通过关键基因来对遗传算法的迭代进行一定的引导提高了遗传算法在本问题上的求解效率。有效解决了电动汽车在城市中多配送中心以及考虑续航的路径问题,降低了电动汽车在配送时的电费成本并且减少了配送时间。
-
公开(公告)号:CN116644874A
公开(公告)日:2023-08-25
申请号:CN202310442560.1
申请日:2023-04-23
申请人: 苏州大学
IPC分类号: G06Q10/047 , G06Q10/083 , G06F18/243 , G06N3/126
摘要: 本发明涉及物流配送技术领域,具体涉及一种多配送中心电动汽车路径规划方法。本发明对于具有多配送中心,多个客户点以及多辆电动汽车进行配送的问题进行了建模,利用以机器学习模型为评估模块的遗传算法对于上述问题进行了求解,同时在遗传算法中根据机器学习模型的评估来判断遗传算法中染色体的关键基因,通过关键基因来对遗传算法的迭代进行一定的引导提高了遗传算法在本问题上的求解效率。有效解决了电动汽车在城市中多配送中心以及考虑续航的路径问题,降低了电动汽车在配送时的电费成本并且减少了配送时间。
-