-
公开(公告)号:CN114596316A
公开(公告)日:2022-06-07
申请号:CN202111479069.3
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明提出了一种基于语义分割的改进型DeepLabv3+技术来尽可能多的保留道路图像分割中的细节特征。该发明在图像分割细节提取方向上具有一定的通用性,该专利以道路图像分割为说明案例。传统的道路分割方法中存在着道路的细节特征被当成噪声滤除的不足,针对该问题,本发明引用了深度学习中的通用语义分割框架DeepLabv3,并对传统的人工图像分割以及采用MobileNetV2的分割所产生的细节特征滤除问题对DeepLabv3进行了进一步的改进。基于语义分割改进后的DeepLabv3+算法模型能够用于对具有复杂背景噪声的无人机图像进行道路分割并且在复杂的背景下实现细节特征的抓取。
-
公开(公告)号:CN114723875A
公开(公告)日:2022-07-08
申请号:CN202111472948.3
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明公开了一种融合了语义分割网络的改进三维场景重建技术。该发明主要针对动态场景下尤其是存在运动物体的室内动态场景下的定位与建图。针对场景重建过程中运动物体会影响三维重建效果的问题,在ORB‑SLAM2框架中加入了目前较为先进的语义分割网络DeeplabV3+,选择MSCOCO数据集训练语义分割网络,将静态特征点和潜在的动态特征点进行区分。而后利用前后帧之间匹配特征点和对应极线的关系进行筛选,确定潜在特征点中处于运动状态的目标特征点并将其剔除,用以得到准确的三维场景地图。加入了语义分割网络的ORB‑SLAM2模型能够一定程度上减少动态场景下运动目标对定位与建图的干扰,且得到的三维地图融合了部分语义信息。
-