基于神经网络的航迹融合办法

    公开(公告)号:CN111582485A

    公开(公告)日:2020-08-25

    申请号:CN202010463021.2

    申请日:2020-05-27

    Abstract: 本发明公开了一种基于神经网络的航迹融合办法,利用多个传感器获取对应的航迹数据,进行预处理后得到样本数据,随所述样本数据进行交互式多模型滤波,得到对应的状态估计,根据输入层、三个隐藏层和输出层,构建神经网络模型,并将划分为训练集、测试集和验证集的样本数据依次输入搜索神经网络模型中进行模型训练、测试和验证,然后将任意所述航迹数据输入训练后的所述神经网络模型,得到加权融合结果,同时再次进行交互式多模型滤波,并对任意时刻任意所述单模型进行一步预测,直至所有所述航迹数据融合完成,提升系统融合效果。

    一种基于动态贝叶斯网络的目标意图识别方法

    公开(公告)号:CN114997306B

    公开(公告)日:2024-12-17

    申请号:CN202210606262.7

    申请日:2022-05-31

    Abstract: 本发明公开了一种基于动态贝叶斯网络的目标意图识别方法,属于目标意图识别技术领域。本发明使用原始数据和评分搜索算法构建动态贝叶斯网络,在评分的过程中使用贝叶斯评分准则BIC和自适应的遗传算法,在反馈策略中使用了集成学习的思想完成边方向的修正。本发明能处理从复杂态势中获取的时序信息和不确定信息,同时引入反馈策略解决了在使用原始数据构建动态贝叶斯网络的过程中出现的会影响识别准确率的反边问题。本发明可用于对空中目标的意图识别处理,则对应的原始数据为目标的飞行状态数据。

    一种基于动态贝叶斯网络的目标意图识别方法

    公开(公告)号:CN114997306A

    公开(公告)日:2022-09-02

    申请号:CN202210606262.7

    申请日:2022-05-31

    Abstract: 本发明公开了一种基于动态贝叶斯网络的目标意图识别方法,属于目标意图识别技术领域。本发明使用原始数据和评分搜索算法构建动态贝叶斯网络,在评分的过程中使用贝叶斯评分准则BIC和自适应的遗传算法,在反馈策略中使用了集成学习的思想完成边方向的修正。本发明能处理从复杂态势中获取的时序信息和不确定信息,同时引入反馈策略解决了在使用原始数据构建动态贝叶斯网络的过程中出现的会影响识别准确率的反边问题。本发明可用于对空中目标的意图识别处理,则对应的原始数据为目标的飞行状态数据。

    一种基于重建的中间域领域自适应方法

    公开(公告)号:CN114693972B

    公开(公告)日:2023-08-29

    申请号:CN202210324083.4

    申请日:2022-03-29

    Abstract: 本发明公开了一种基于重建的中间域领域自适应方法,属于计算机视觉、智能频谱数据分析等领域自适应技术领域,具体涉及一种基于重建的中间域领域自适应方法。本发明针对现有领域自适应方法领域特征对齐困难等不足之处,提出一种基于重建的中间域领域自适应方法,并且能够实现更好的分类性能。本发明使用重建的方法对源域数据和目标域数据的特征进行提取,这样提取到特征将包含更多的数据信息,具有更强的可辨别性。同时,针对实际场景中两域之间直接对域差异最小化实现困难的问题,本发明通过在中间域对两域特征进行对齐,从而达到减轻特征对齐难度的目的,最终实现目标域数据的有效分类。

    一种基于多飞行器轨迹数据的队形识别模型构建方法

    公开(公告)号:CN114359604B

    公开(公告)日:2023-04-07

    申请号:CN202111486478.6

    申请日:2021-12-07

    Abstract: 本发明公开了一种基于多飞行器轨迹数据的队形识别模型构建方法,属于飞行器队形识别技术领域。本发明首先周期性采集飞行器集群中的各飞行器的飞行轨迹数据并进行数据清洗和变换处理,再提取飞行器集群的初始特征数据,并基于此生成队形特征训练数据后,基于预置的队形识别类型,进行Lightgbm模型训练得到队形识别模型。从而进一步基于得到的队形识别模型实现飞行器的队形识别处理:按照训练时相同的方式提取飞行器集群的初始特征数据并生成每一个飞行器集群的待识别特征数据,再输入队形识别模型,基于其输出得到当前飞行器集群的队形识别结果。本发明解决了传统飞行器队形识别依赖于专家知识、特征提取以及准确率的技术问题,提升队形识别准确率。

    一种于意图识别的轨迹数据处理方法

    公开(公告)号:CN115718895A

    公开(公告)日:2023-02-28

    申请号:CN202211215902.8

    申请日:2022-09-30

    Abstract: 本发明公开了一种于意图识别的轨迹数据处理方法,属于轨迹数据处理技术领域。本发明包括:采集飞行器的轨迹数据,并对采集的轨迹数据进行数据预处理,按照指定的数据格式存储轨迹数据;提取一定数量的轨迹数据并进行特征提取处理;采用动态时间规整算法对轨迹相似度进行判别,通过层次聚类得到轨迹对应的轨迹簇并将其作为类别信息添加到轨迹数据中,作为一条训练轨迹数据;对于聚类得到的各轨迹簇,通过簇内轨迹的相互相似度计算出每个轨迹簇的中心轨迹;构建并训练意图识别模型,以获取待识别的轨迹数据的意图识别结果。本发明能有效提升对飞行器的飞行意图的识别性能。

    一种基于重建的中间域领域自适应方法

    公开(公告)号:CN114693972A

    公开(公告)日:2022-07-01

    申请号:CN202210324083.4

    申请日:2022-03-29

    Abstract: 本发明公开了一种基于重建的中间域领域自适应方法,属于计算机视觉、智能频谱数据分析等领域自适应技术领域,具体涉及一种基于重建的中间域领域自适应方法。本发明针对现有领域自适应方法领域特征对齐困难等不足之处,提出一种基于重建的中间域领域自适应方法,并且能够实现更好的分类性能。本发明使用重建的方法对源域数据和目标域数据的特征进行提取,这样提取到特征将包含更多的数据信息,具有更强的可辨别性。同时,针对实际场景中两域之间直接对域差异最小化实现困难的问题,本发明通过在中间域对两域特征进行对齐,从而达到减轻特征对齐难度的目的,最终实现目标域数据的有效分类。

    一种基于多飞行器轨迹数据的队形识别模型构建方法

    公开(公告)号:CN114359604A

    公开(公告)日:2022-04-15

    申请号:CN202111486478.6

    申请日:2021-12-07

    Abstract: 本发明公开了一种基于多飞行器轨迹数据的队形识别模型构建方法,属于飞行器队形识别技术领域。本发明首先周期性采集飞行器集群中的各飞行器的飞行轨迹数据并进行数据清洗和变换处理,再提取飞行器集群的初始特征数据,并基于此生成队形特征训练数据后,基于预置的队形识别类型,进行Lightgbm模型训练得到队形识别模型。从而进一步基于得到的队形识别模型实现飞行器的队形识别处理:按照训练时相同的方式提取飞行器集群的初始特征数据并生成每一个飞行器集群的待识别特征数据,再输入队形识别模型,基于其输出得到当前飞行器集群的队形识别结果。本发明解决了传统飞行器队形识别依赖于专家知识、特征提取以及准确率的技术问题,提升队形识别准确率。

Patent Agency Ranking