基于级联检索语境学习的信息扩散预测方法

    公开(公告)号:CN118485106A

    公开(公告)日:2024-08-13

    申请号:CN202410585053.8

    申请日:2024-05-13

    Abstract: 本发明属于信息传播技术领域,公开了一种基于级联检索语境学习的信息扩散预测方法,基于历史信息级联序列构建提示池,并对提示池进行增强处理,同时获取提示池的用户嵌入;从提示池中检索若干与查询级联匹配的若干提示;依据提示池的用户嵌入,获取查询级联和若干提示的用户嵌入;进而通过预训练的transformer网络生成级联表示;并将级联表示与查询级联的用户嵌入融合得到最终表示;依据最终表示和提示池的用户嵌入,生成用户预测结果,完成信息扩散预测。本发明探索了基于动态级联提示的级联信息扩散预测方法,并通过检索增强语境学习来获取级联间复杂的相互依赖关系,提升信息扩散预测效果。

    一种基于超图检索增强的多模态社交媒体流行度预测方法

    公开(公告)号:CN118690069A

    公开(公告)日:2024-09-24

    申请号:CN202410902540.2

    申请日:2024-07-07

    Abstract: 本发明属于大数据处理技术领域,公开了一种基于超图检索增强的多模态社交媒体流行度预测方法,首先构建包含图像内容、文本内容和UGC属性信息的UGC记忆库;再从记忆库中检索出与目标UGC相关的若干实例,生成实例集;将生成的实例集转换成以目标UGC为中心的超图,并进行视觉模态和文本模态两种模态的模态内传播与模态间传播,得到更新后的视觉模态和文本模态表示;将目标UGC分别与更新后的视觉模态和文本模态表示进行级联,并经交叉注意力机制处理得到丰富化后的UGC表示,基于此得到流行度预测值。本发明基于属性感知的检索增强实例,并通过模态内传播与模态间传播有效地学习多模态表示,以丰富目标UGC的表示,增强社交媒体流行度预测任务。

    一种基于信息瓶颈的可解释街道级IP地址定位方法

    公开(公告)号:CN119544666A

    公开(公告)日:2025-02-28

    申请号:CN202411628904.9

    申请日:2024-11-14

    Abstract: 本发明属于机器学习中的神经网络领域,公开了一种基于信息瓶颈的可解释街道级IP地址定位方法,主要利用图神经网络和信息瓶颈理论对目标IP进行地理定位的同时判别出影响定位结果的重要路标节点:首先,应用以目标IP为中心的构图方式筛选出与目标IP匹配的地标IP;其次,通过计算目标IP和地标IP的属性相似度得到了节点间的注意力权重矩阵;再次,在注意力权重矩阵中应用信息瓶颈理论,逐渐得到了影响目标IP地理定位的重要路标节点;最后,使用多层感知机进行线性仿射变化,从隐空间中解码得到了目标IP的经纬度坐标。本发明缓解了IP定位中农村、偏远地区网络节点稀疏的问题,提供了预测模型的可解释性。

Patent Agency Ranking