一种基于智能移动终端的跌倒检测方法

    公开(公告)号:CN111436944B

    公开(公告)日:2021-09-28

    申请号:CN202010309877.4

    申请日:2020-04-20

    Abstract: 本发明公开了一种基于智能移动终端的跌倒检测方法,包括以下步骤:采集在身高、体重、年龄方面有良好代表性的人体活动数据,并构建数据集;运用特征工程技术对数据集进行特征提取与分析,使用PCA降维技术对特征向量进行分析;基于LSTM‑FCN模型设计FallNet模型,对FallNet模型进行训练;将训练好的FallNet模型内置在移动设备中进行跌倒检测;本发明方法通过设计FallNet模型,在增加少量参数的情况下,FallNet模型的17类别分类效果达到了98.59%,APP能够对人体活动进行识别,也可以对人体跌倒发出警报和报警,可以实现对老龄人群健康状态的智能监测,且监测过程实时性高。

    一种基于智能移动终端的跌倒检测方法

    公开(公告)号:CN111436944A

    公开(公告)日:2020-07-24

    申请号:CN202010309877.4

    申请日:2020-04-20

    Abstract: 本发明公开了一种基于智能移动终端的跌倒检测方法,包括以下步骤:采集在身高、体重、年龄方面有良好代表性的人体活动数据,并构建数据集;运用特征工程技术对数据集进行特征提取与分析,使用PCA降维技术对特征向量进行分析;基于LSTM-FCN模型设计FallNet模型,对FallNet模型进行训练;将训练好的FallNet模型内置在移动设备中进行跌倒检测;本发明方法通过设计FallNet模型,在增加少量参数的情况下,FallNet模型的17类别分类效果达到了98.59%,APP能够对人体活动进行识别,也可以对人体跌倒发出警报和报警,可以实现对老龄人群健康状态的智能监测,且监测过程实时性高。

Patent Agency Ranking