基于可解释性图神经网络的风电机组异常检测与定位方法

    公开(公告)号:CN115329986A

    公开(公告)日:2022-11-11

    申请号:CN202210873216.3

    申请日:2022-07-21

    Applicant: 燕山大学

    Abstract: 本发明公开了基于可解释性图神经网络的风电机组异常检测与定位方法,属于风电机组状态监测领域,所述方法包括S1、筛选多变量时间序列SCADA数据;S2、协变量预处理及谱域图卷积网络模型初始化;S3、将协变量预处理之后的健康数据输入谱域图卷积网络,提取特征;S4、根据训练集设置阈值;S5、通过检测与定位模块进行异常检测和异常定位;S6、通过事后可解释性模块进行异常检测和定位;S7、将检测与定位模块和决策可解释性模块综合评估,对机组健康状态进行科学性的评估和指导。本发明实现了对机组故障的早期预警,实现了对机组故障的精准定位,有利于在亚健康时及时对机组进行处理和维护,避免机组及关键部件的深度伤害。

Patent Agency Ranking