基于粒子群算法的模拟电路故障诊断神经网络方法

    公开(公告)号:CN101221213A

    公开(公告)日:2008-07-16

    申请号:CN200810030543.2

    申请日:2008-01-25

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于粒子群算法的模拟电路故障诊断神经网络方法,包括以下步骤:给待测的模拟电路施加激励信号,在电路的测试节点测量激励响应信号;将测量的激励响应信号消噪后再作小波包变换提取候选故障特征信号,再进行正交主元分析和归一化处理后,提取故障特征信息,作为样本输入神经网络进行分类。本发明采用粒子群算法用来替代传统BP算法中的梯度下降法,使得改进后的算法具有不易陷入局部极小和具有较好的泛化性能等特点。采用这种基于粒子群优化的模拟电路故障诊断的BP神经网络法,能够明显地减少算法中迭代的次数和提高网路收敛精度,提高了诊断的速度和精度。

Patent Agency Ranking